

Air quality status of Nepal 2016-2020 Main report

DECEMBER 1, 2021

DEPARTMENT OF ENVIRONMENT

Babarmahal, Kathmandu

Contributors:

Govinda Prasad Lamichhane

Nabina Maharjan

Sunita Phuyal

Bishnu Pandey

Swasti Shrestha

Hasana Shrestha

Keshab Raj Joshi

Editor:

Shankar Prasad Paudel

All rights reserved. DoEnv encourages the reproduction and dissemination of material in this information products. First online edition © DoEnv 2021
II

Acknowledgements

In collaboration with various organizations, the Department of Environment (DoEnv) has installed 27 monitoring stations till 2020. These 27 stations are installed throughout the country and are equipped with air quality instruments that provides real-time data. This report presents an analysis of the data from these stations. Real-time data up to one week period can be directly visualized from www.pollution.gov.np.

Except for a summary report of 2017 published electronically, this is the first point of departure in terms of report generation since data collection started in 2016. This report contains explanatory notes, graphs, and time series analysis, and is structured with a summary report as well as a 25 station-wise individual reports. These reports contain the analysis of particulate matter only but the future reports will definitely contain analyses of other parameters as well.

We are grateful to the International Centre for Integrated Mountain Development (ICIMOD) for supporting Department of Environment in establishing a number of Air Quality Monitoring Stations (AQMS) as a part of the national Air Quality Monitoring Network, and for providing technical support to the Department of Environment. We also thank the Asian Development Bank (ADB) for providing four dust monitors. We are also grateful to US Embassy in Kathmandu for establishing two AQMS – one on the embassy premises, and the other in Fohara Durbar.

We are thankful for the support provided by Dr Biswo Nath Oli, Former secretary, MoFE. We are extremely grateful to to Dr Pem Narayan Kandel, Secretaty Ministry of Forest and Environment, Mr Indu Bikram Joshi, Deputy Director General of DoEnv, Mr Shankar Prasad Poudel, Section Head of Environmental Pollution Monitoring and Regulation, and all other section heads for their active and constructive comments and encouragement during report preparation. We appreciate the data analysis team members comprising of the environment inspectors – Ms Nabina Maharjan, Mr Govinda Prasad Lamichhane, Ms Sunita Phuyal, Mr Bishnu Pandey, Ms Swasti Shrestha, Ms Hasana Shrestha, Mr Keshab Raj Joshi and Mr Rajeshwor Paudel for their continuous and rigorous hard work that has led to this report. Furthermore, a special thanks to all the staff of DoEnv, and everybody who has contributed to parts of this report, its editing and design. Lastly, the DoEnv is highly obliged to the Ministry of Forests and Environment for its continuous support and guidance in preparing the report.

The Department of Environment is always keen to receive suggestions for the betterment of our reports.

Mukunda Prasad Niroula Director General

Table of Contents

Abbreviati	onV
Chapter 1:	Introduction
1. Bac	kground1
1.1	Air quality1
1.2	Objectives3
1.3	Air quality parameters monitored
1.4	Methods of air quality monitoring and data analysis
1.5	National Ambient Air Quality Standards, 2012 (NAAQS)4
1.6	Air quality status – Kathmandu5
1.7	Air quality status – Pokhara5
Annex 1:	Summary sheet6
	List of figures
Figure 1:	Distribution of air quality monitoring stations in Nepal
Figure 2:	Growth of real-time air quality monitoring stations from 2016 to 20202
Figure 3 :	Province-wise distribution of AQMS2
Figure 4:	Air quality status of Kathmandu Valley5
Figure 5: `	Yearly air quality status of Pokhara Valley5
	List of tables
Table 1 Na	ame of AQMS with volume of report4
Table 2: N	Jational Ambient Air Quaity Standards, 20124

Abbreviation

ADB Asian Development Bank

AQMS Air quality monitoring station

CO Carbon monoxide

DHM Department of Hydrology and Meteorology

GBS Gandaki Boarding School

ICIMOD International Centre for Integrated Mountain Development

NAAQS National Ambient Air Quality Standards

NITC National Information Technology Center

NOx Nitrogen oxide

PM Particulate matter

PU Pokhara University

SO₂ Sulphur dioxide

TSP Total suspended particulates

Chapter 1: Introduction

1. Background

1.1 Air quality

Air pollution causes both short- and long-term health impacts along with environmental damage. Rapid population growth, rapid and environment unfriendly industrialization, and urbanization are prime anthropogenic causes responsible for air pollution. As the negative consequences of air pollution increase and become evident, concerns about air quality have also increased amongst the people in Nepal. This demands the establishment and operation of air quality monitoring stations that can provide real-time data of air quality in specific areas and across the whole country.

Being the national focal institution for environmental issues, the Department of Environment under the Ministry of Forests and Environment, in collaboration with other organizations, established the real-time air quality monitoring station in 2016. The The International Centre for Integrated Mountain Development (ICIMOD) and Asian Development Bank (ADB) have significantly contributed to the establishment of Air Quality Monitoring Stations (AQMS).

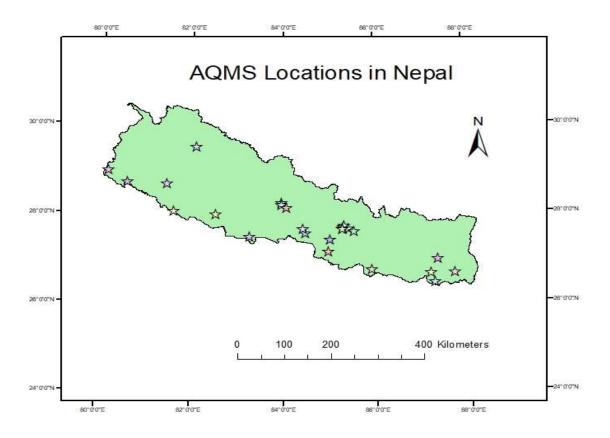


Figure 1: Distribution of air quality monitoring stations in Nepal

From 2016 to June 2021, the total number of air quality monitoring stations has reached 27, including the black carbon monitoring station at Yala, Langtang (Figure 1), all of which provide real-time air quality data.

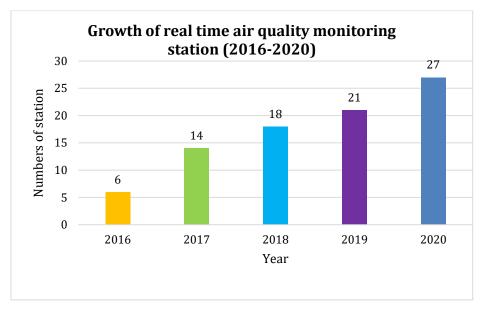


Figure 2: Growth of real-time air quality monitoring stations from 2016 to 2020 Province wise, a number of AQMS are located in Bagmati province and very few in Karnali province as shown below –

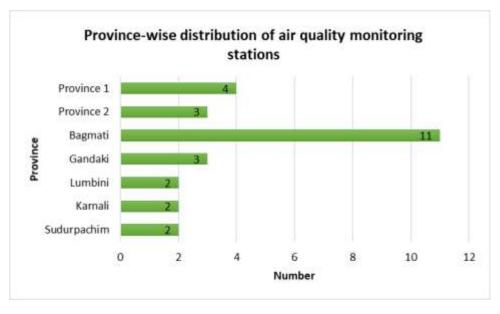


Figure 3: Province-wise distribution of AQMS

All stations except for the one in Yala measure the following major parameters – PM_1 , $PM_{2.5}$, PM_{10} and Total Suspended Particulates (TSP), as well as additional parameters such as ozone, CO, SOx, NOx in a few stations. The measurement of these parameters is essential not

only for the management of the current air quality but also to forecast future air pollution situations, which can assist in preventing possible air pollution-induced hazards. Additionally, the data generated forms a scientific basis for formulating policies and related legal documents to address air pollution-related issues.

The Government of Nepal has enforced the National Ambient Air Quality Standards (NAAQS), 2012 for nine parameters. This report has been prepared based on the analysis of data from all available monitoring stations for the period from 2016 to 2020 to understand the status of compliance with reference to the National Ambient Air Quality Standards (NAAQS).

1.2 Objectives

The overall objective of this report is to present the status of the air quality on the basis of the data collected from the 24 stations from 2016-2020.

The report also analyzes PM₁, PM_{2.5}, PM₁₀, and the Total Suspended Particulate Matter (TSP) data of the various stations.

1.3 Air quality parameters monitored

The following parameters were monitored in the stations.

TSP: Includes all solid and liquid droplet particulate present in the air with size more than 0.25µm.

 PM_{10} : Includes particulate matter with an aerodynamic diameter less than 10 μm

PM_{2.5}: Includes particulate matter with an aerodynamic diameter less than 2.5 μ m diameter and important in terms of health impacts.

 PM_1 : Includes particulate matter with an aerodynamic diameter less than $1\mu m$ diameter; important in terms of health impacts.

1.4 Methods of air quality monitoring and data analysis

The Grimm Electronic Dust Monitor(EDM) 180 is used for air quality monitoring. It uses the laser light-scattering technology for particle count. A semiconductor-laser serves as the light-source. The particle size analyzer/dust monitor determines the dust-concentration (counts/litre) through the optical-light-scattering method directly; however, the mass concentration is automatically calculated.

The instrument takes measurements every minute. The station then sends this data to the central server located at the National Information Technology Center (NITC), Singha Durbar, Kathmandu. From these point data, an hourly average data is calculated. For this analysis, the hourly average data was downloaded from the data management system, which was used to calculate the daily average. From they daily average, monthly average, seasonal average, and annual average were calculated. For years with less than six months data, the annual average was not calculated. Furthermore, data from the month of December of the

preceding year was used for calculating the air quality during the winter season. The report has excluded seasonal averages for years where data for only one season was available. The histograms were plotted using the hourly average data. Similarly, boxplots of the diurnal variation and monthly variation have been plotted using the hourly average data.

This report is a compilation of reports of 24 individual stations in 24 different volumes, summary of which is attached in annex 1.

Table 1 Name of AQMS with volume of report

Volume 1	Dhulikhel	Volume 10	Pokhara	Volume 18	Surkhet
Volume 2	Lumbini		University	Volume 19	Bharatpur
Volume 3	Pulchowk	Volume 11	Shankhapark	Volume 20	Bhimdatta
Volume 4	Ratnapark	Volume 12	Dang	Volume 21	Biratnagar
Volume 5	Sauraha	Volume 13	Jhumka	Volume 22	Dhangadhi
Volume 6	Bhaisepati	Volume 14	Nepalgunj	Volume 23	Hetauda
Volume 7	Bhaktapur	Volume 15	Simara	Volume 24	Janakpur
Volume 8	DHM Pokhara	Volume 16	Damak		
Volume 9	GBS Pokhara	Volume 17	Dhankuta		

1.5 National Ambient Air Quality Standards, 2012 (NAAQS)

Government of Nepal has published National Ambient Air Quality Standards in 2012. The NAAQS gives maximum concentration for major nine parameters including particulate matters and trace gases, heavy metal and others as shown in the table below.

Table 2: National Ambient Air Quaity Standards, 2012

Parameters	Units	Averaging time	Maximum concentration		
TSP	μg/m³	24-hr	230		
PM ₁₀	μg/m³	24-hr	120		
Sulfur Dioxide	μg/m³	Annual	50		
		24-hr	70		
Nitrogen Dioxide	μg/m³	Annual	40		
		24-hr	80		
Carbon monoxide	μg/m³	8-hr	10,000		
Lead	μg/m³	Annual	0.5		
Benzene	μg/m³	Annual	5		
PM _{2.5}	μg/m³	24-hr	40		
Ozone	μg/m³	8-hr	157		

1.6 Air quality status - Kathmandu

Kathmandu valley has seven air quality monitoring stations in different parts of the valley, including in Dhulikhel – Ratnapark, Sankhapark, Bhaisepati, Pulchowk, Bhaktapur, and Kirtipur. The following graph shows the air quality status of Kathmandu.

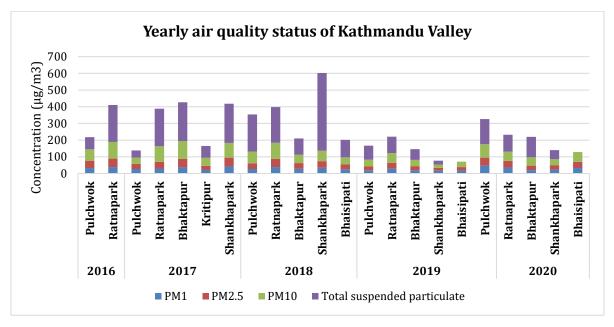


Figure 4: Air quality status of Kathmandu Valley

1.7 Air quality status - Pokhara

Pokhara valley has three air quality monitoring stations located at the Department of Hydrology and Meteorology (DHM), Pokhara University (PU), and Gandaki Boarding School (GBS). The following graph shows the air quality status of Pokhara.

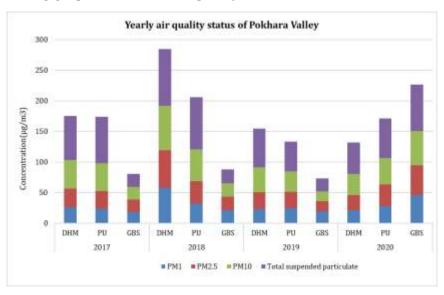


Figure 5: Yearly air quality status of Pokhara Valley

Annex 1: Summary sheet

Volume	Stati	Parame			Time period												
	on	ters		2016			2017			2018			2019		2020		
			Annual average					pliance atus	Annual average	Compliance status		Annual average	Compliance status		Annual average	Compl	iance status
				Total days of measurement	Days exceeding		Total days of measurement	Days exceeding NAAQS		Total days of measurement	Days exceeding NAAQS		Total days of measurement	Days exceeding NAAQS		Total days of measurement	Days exceeding NAAQS
1		PM ₁	30.52			25.32			25.23			23.66			21.38		
	hel	PM _{2.5}	42	62	6	31.08	279	74	30.47	356	91	27.19	220	41	22.25	241	29
	Dhulikhe l	PM ₁₀	64.17	<u>;</u>	1	55.68	279	10	48.54	1	14	40.31	221	2	23.56		0
	D	TSP	118.12		2	131.71	279	37	97.27	-	30	61.25	220	5	24.1		0
2		PM_1				46.57			34.68								
	·	PM _{2.5}		20	20	51.49	309	158	38.99	253	88		103	50		28	12
	Lumbini	PM ₁₀			20	71.75		206	51.23	252	136			77]	22
	Lur	TSP															
3		PM ₁				27.28			27.33			19.58			jan feb		
	¥	PM _{2.5}		68	43	31.03	336	103	34.74	322	107	23.23	353	37		51	42
	Pulchowk	PM ₁₀			1	37.18		0	69.66	322	53	39.57		0			3
	Pul	TSP			0	42.5		0	222.06	136	73	84.31		2			4
4		PM ₁				29.84			38.98			29.05			36.19		
	갂	PM _{2.5}		111	75	40.95	336	131	49.72	317	180	35.88	320	142	39.96	230	78
	Ratnapark	PM ₁₀			32	92.48		72	95.3	306	92	57.7		42	54.97	217	31
	Rati	TSP			52	225.47		105	214.08	317	137	98.28		36	101.1	228	27
5		PM ₁				49			24			28			28		
		PM _{2.5}				48	347	178	30	252	67	32	287	115	32	162	46
	aha	PM ₁₀				60		33	41		5	43		6	38	1	2
	Sauraha	TSP				61		9		251	0			0			

6		PM_1					25.31			19.58			32.5		
	pati	PM _{2.5}			142	77	28.61	352	80	23.23	338	54	37.59	359	140
	Bhaisespati	PM ₁₀				122	43.7		79	39.57	352	79	59.03		29
	Bha	TSP				140	104.28		79	84.31	359	105	37.59		105
7		PM ₁		36.78			28.24			19.78			20.68		
	ŭ	PM _{2.5}		51.62	125	68	34.9	329	90	24.24	298	48	28.72	214	37
	Bhaktapur	PM ₁₀		106.21	•	97	49.49		41	37.83	1	26	49.49	196	28
	Bha	TSP		231.91	•	122	97.94		159	64.58	1	28	122.73	213	50
8	rg .	PM ₁					57.96			23.39			21.21		
	DHM Pokhara	PM _{2.5}		136	47	61.07	248	208	27.45	332	73	24.5	250	46	
	M Po				0	72.76		5	40.55		0	34.69		1	
	DHI	TSP				0	93.1		2	63.47		0	51.48	1	0
9		PM_1		18.77			20.96			19.44			46.04		
	GBS Pokhara	PM _{2.5}		19.93	130	4	22.36	234	33	16.63	299	3	48.71	334	131
	Pok	PM ₁₀		20.9		0	22.28	208	3	15.71		0	56.02		63
	GBS	TSP		20.84	ļ	0	22.38	234	0	21.32		0	75.77		7
10		PM ₁													
	pur	PM _{2.5}			45	6									
	TU Kritipur	PM ₁₀				0									
	TU	TSP				2									
11		PM ₁					32.14			24.43			27.96		
		PM _{2.5}			138	42	36.45	260	121	27.18	255	61	35.21	216	76
		PM ₁₀				0	51.76		9	32.79		0	43.58		0
	PU	TSP				0	85.47		5	49.14		0	64.91		0
12		PM ₁		42.9			34.96			16.32			23.45		
	park	PM _{2.5}		51.91	108	77	38.98	175	94	17.64	267	16	26.48	252	33
	Sankhapark	PM ₁₀		88.31		19	62.99		5	20.46	1	0	35.3		1
	Sar	TSP		235.32	107	54	465.04	138	59	22.57	1	0	55.55		0
13	р	PM ₁								26.09			21.48		

		PM _{2.5}					80	61	31.53	346	112	26.15	311	52
		PM ₁₀						7	53.99		31	44.2		157
		TSP						1	570.42		165	78.49		8
14		PM_1				142.8			49.38			103.61		
		PM _{2.5}				161.26	11	11	56.72	249	103	119.12		
	Jhumka	PM ₁₀				201.75		11	76.48		64	152.72		
	Jhu	TSP				272.96		9	113.11		54	203.01		
15		PM ₁				48.27			46.03			23.34		
	nj	PM _{2.5}				59.94	116	78	56.47	322	179	24.3	312	51
	Nepalgunj	PM ₁₀				101.93		57	103.67		108	25.97		18
	Nep	TSP				196.68		50	210.34		89	26.7		40
16		PM ₁							37					
		PM _{2.5}					170	64	38.11	361	164		170	44
	ara	PM ₁₀						51	42.57		5		184	58
	Simara	TSP						0	50.98		0		186	16
17		PM ₁										57.09		
		PM _{2.5}								33	31	64.84	158	109
	nak	PM ₁₀								47	22	91.6		47
	Damak	TSP								47	14	141.6	1	22
18		PM ₁										41		
	rg.	PM _{2.5}								141	47	42	192	79
	Dhankuta	PM ₁₀									5	42		4
	Dha	TSP									119	162		53
19		PM ₁												
		PM _{2.5}												
	Surkhet	PM ₁₀												
	Sur	TSP												
20	n	PM ₁										29		
	Bharatpu r	PM _{2.5}										41	193	80
	Bha	PM ₁₀										71		42

	1	TSP						162		53
21		PM_1						45.16		
	tta	PM _{2.5}						45.15	161	78
	Bhimdatta	PM ₁₀						84.93		52
	Bhi	TSP						138.66		24
22		PM ₁						23.34		
	şar	PM _{2.5}						24.3	169	69
	Biratnagar	PM ₁₀						25.97		35
	Bira	TSP						26.7		17
23		PM_1						52.7		
	dhi	PM _{2.5}						66.79	161	88
	Dhangadhi	PM ₁₀						109.37		77
	Dha	TSP						176.07	162	66
24	da	PM_1						31.21		
	Hetauda	PM _{2.5}						37.25	146	60
	H	PM ₁₀						59.39		9
		TSP						114.11		8
25		PM_1								
	cpur	PM _{2.5}							168	74
	Janakpur	PM ₁₀							169	13
		TSP							156	1