

Government of Nepal Ministry of Energy, Water Resources and Irrigation Department of Hydrology and Meteorology Babarmahal, Kathmandu, Nepal

FINAL REPORT

Main Report-Volume I

Preparation of Bathymetric Map of Phoksundo Lake of Dolpa to Update its Inventory July, 2019

Prepared by:

Nepal Hydrological and Meteorological Research Center and Consultancy P. Ltd. Kathmandu, Nepal Email: <u>nhmconsult10@gmail.com</u> Web: www.nhmrcc.com.np

Table of Contents

Re	port I	Preparation, Quality Checkup and Declaration	5		
1.	Awa	Award of Job7			
2. Introduction					
	2.1	General	7		
	2.2	Lakes of Nepal	8		
	2.3	Objectives and Scopes of the work	9		
3.	Stu	dy Area			
	3.1	Phoksundo Lake: Dolpa			
	3.2	Climate and Geography	12		
	3.3	Hydrology and Drainage Pattern	14		
	3.4	Geology	14		
4.	Lite	erature Review			
5.	Met	thodology	21		
6.	Fiel	ld Works	22		
	6.1	Preparatory Meeting at DHM	22		
(6.2	Testing of Echo sounder prior to field work	22		
l	6.3	Bathymetric Survey	23		
(6.4	Topographic Survey	24		
	6.5	Possible Errors in Survey and Bathymetry			
	6.6	Water Sample Collection and handling			
(6.7	Discharge Measurement			
	6.8	Instruments used in the field and their features			
7.	Res	ults and Discussion			
,	7.1	Topographic, L and X Section Map			
,	7.2	Bathymetric Survey			
	7.2.	1. Bathymetric map of Phoksundo Lake			
	7.2.	2. Depth-Volume Relationship			
	7.2.	• •			
,	7.3	Discharge Calculation			
	7.4	Water Quality and Sediment Analysis			
8.	Con	nclusion and Recommendation			

Annex I	50
Discharge Sheet	50
Annex II	58
Water Quality and Sediment Analysis	58
Annex III	62
Field Photographs	62
Annex IV	70
Instrument Specification:	70
Echo Sounder	70
GPS	71
DGPS	71
Annex V	74
Field itinerary	74
Outline of Daily Activities on the Site	74
Annex: VI	
Topographic Map	76
Annex: VII	77
L-Section and X-section map	77
Annex VIII	
Bathymetric Map	
Annex IX	79
Meetings Minute	
With Local Leader at Ringmo Village, Phoksundo	
Field Report Presentation	80
Draft Report Presentation	81
Consultative Workshop	82
- Workshop Photos	83
Annex X	
2004 Bathymetric Survey Chart and Interpretation	85
References	

DHM

List of Figures

Figure 1: Map of Nepal showing the physiographic region	7
Figure 2: Location of Phoksundo Rural municipality	10
Figure 3: Location map of Phoksundo Lake, Dolpa	
Figure 4: Phoksundo Lake (Looking towards Inlet from Outlet, Date: 27 May 2019)	12
Figure 5: Topographical Map of Phoksundo Lake	12
Figure 6: Map of topography and elevation of basin of Phoksundo (thick line 100m interval)	14
Figure 7: Ringmo-Phoksundo site	15
Figure 8: View looking Northwards	15
Figure 9: Testing of Echo sounder at <i>Indra Sarobar</i> Lake, Kulekhani	23
Figure 10: Water Sample Collection Points	34
Figure 11: Topographic map of Phoksundo Lake	
Figure 12: Calculated Length and width of Lake from survey data	
Figure 13: Measurement points of Bathymetric Survey	40
Figure 14: Bathymetric map of Phoksundo Lake	42
Figure 15: Depth-Volume Curve	44
Figure 16: Elevation-Area Curve	44
Figure 17: Depth-Area and Volume Curve	45
Figure 18: Hypsometric Curve	45

List of Tables

Table 1: Altitudinal Distribution of Lakes in Nepal	8
Table 2: Rainfall and temperature, Station no. 312 (DHM)	13
Table 3: High altitude lakes in Nepal	
Table 4: Morphological Parameters of Phoksundo Lake 2008 and 2004 (DHM)	
Table 5: Test and verification of Echo-Sounder	23
Table 6: Location and measurement of physical parameters measured at the site	
Table 7: Location of site for water sample collection	
Table 8: Morphometric parameters of Phoksundo Lake	
Table 9: Depth-Volume relationship	
Table 10: Summary of discharge measurements at three different locations of Phoksundo Lake	
Table 11: Suspended sediment, Chholupu Lek Intake	
Table 12: Suspended sediment, Sagar Lek Intake	
Table 13: Biological Properties of Lake Water	
Table 14: Chemical Properties of Lake water	
1. I I I I I I I I I I I I I I I I I I I	

Acronyms:

BCM	: Billions Cubic Meter
CBS	: Central Bureau of Statistics
TU	: Tribhuvan University
BOD	: Biological Oxygen Demand
CDES	: Central Department of Environmental Science
COD	: Chemical Oxygen Demand
DGPS	: Differential Global Positioning System
DHM	: Department of Hydrology and Meteorology
DOAD	: Department of Agriculture Development
GLOF	: Glacial Lakes Outburst Floods
GoN	: Government of Nepal
GPS	: Global Positioning System
IUCN	: International Union for Conservation of Nature
MoFALD	: Ministry of Federal Affairs and General Administration
MCM	: Million Cubic Meter
NCVST	: Nepal Climate Vulnerability Study Team
NHMRCC	: Nepal Hydrological and Meteorological Research Center and Consultancy
NLCDC	: National Lake Conservation Development Committee
NTNC	: National Trust for Nature Conservation
ToR	: Term of Reference

Report Preparation, Quality Checkup and Declaration

Project Name: Preparation of Bathymetric Map of Phoksundo Lake of Dolpa to Update its Inventory				
•	Energy, Water Resources and Ir	rigation, Departmen	nt of Hydrology and	
Meteorology				
	Hydrological and Meteorologica			
Types of Report:		Report submitted	on: July, 2019	
		No. of copies: 15		
Quality Control As				
.	nd Checked by the Key Professio			
Designation	Name	Signature	Date	
Team Leader	Mr. Om Ratna Bajracharya			
Hydrologist	Mr. Dhruba Lochan Adhikari			
Hydrologist	Mr. Rajesh Sigdel			
Meteorologist	Mr. Santosh Regmi			
S. Surveyor	Mr. Sabin Dangol			
Surveyor	Mr. Ishwor Sharma			
Surveyor	Mr. Roshan Bhandari			
GIS Specialist	Mr. Sandeep Adhikari			
Office Assistant	Ms. Shruti Dhakal			
	en prepared based on the scope of	f works mentioned	in ToR.	
Authorized Person of the Consultant:				
Name: Santosh Regmi		Seal		
Designation: Chair	rman			
Signature				

I declare the following:

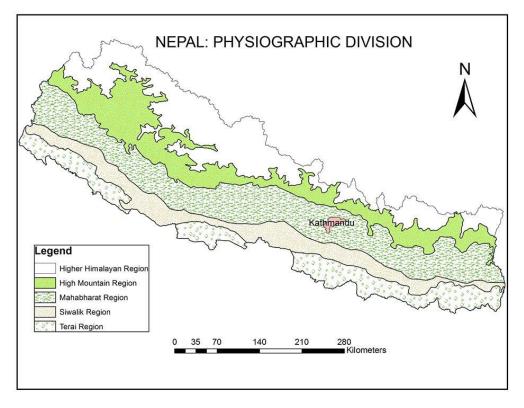
- i. I have conducted the study professionally using standard and acceptable methodologies.
- ii. The study findings are correct to the best of my knowledge; and have not been altered in any manner.
- iii. I myself with the team will be liable for any misunderstanding and errors in the report.

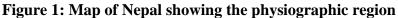
Acknowledgement

On behalf of Nepal Hydrological and Meteorological Research Centre and Consultancy Pvt. Ltd. (NHMRCC), we would like to graciously thank the Department of Hydrology and Meteorology (DHM), Nepal for awarding this contract and providing the opportunity to carry out the work on 'To Prepare Bathymetric Map of Phoksundo Lake of Dolpa to update its Inventory'. We would also like to thank all the external expert from Tribhuvan University, Kathmandu University, Ministry of Energy, Water Resources and Irrigation and Water and Energy Commission Secretariat for their comments and inputs to make this report more advanced. We are very much grateful to team leader Mr. Om Ratna Bajracharya for his rigorous work and valuable contribution to carry out this study. Thanks to Mr. Dhruba Lochan Adhikari, for his untiring effort to complete this study. We would like to thank Mr. Ishwor Sharma, Mr. Roshan Bhandari, surveyors; and Mr. Pujan Gurung, boat guide for their work. Special thanks go to Chairman Mr. Tashi Tundup Gurung and Vice Chairman Mr Dhawa Sumduk Gurung of Shey Phoksundo Rural Municipality; Ward Chairman of ward no. 8, Mr. Nima Lama; Chairman Mr. Ringzin Wangyal Budha of Phoksundo Lake Conservation Committee and Mr. Phurba Tenzing Budha, Chairman of Phoksundo Buffer Zone User Group for their valuable support in field work and other aspects. Thanks to Mr. Pramod Kumar Yadav, Warden of Shey Phoksundo National Park. We are equally thankful to Lama Guru and local people who contributed to us by providing local beliefs and cultural background associated with the lake. Finally, special thanks to Mr. Sabin Dangol, Engineer (SEC P. Ltd. team) for his continuous support in data management and map preparation. NHMRCC would also like to thank all the researchers and associates involved.

Nepal Hydrological and Meteorological Research Center and Consultancy P. Ltd Kathmandu, Nepal July, 2019

1. Award of Job


As per the agreement signed between the **Department of Hydrology and Meteorology** and **Nepal Hydrological and Meteorological Research Center & Consultancy P. Ltd.** for consulting services on **'Preparation of Bathymetric Map of Phoksundo Lake of Dolpa to Update its Inventory'**, the consultant is pleased to submit this Final Report. This report includes introduction, study area, objective and scope of work, literature review, methodology, field work, result and discussion and conclusion.


2. Introduction

2.1 General

Nepal is a small landlocked country that covers an area of 147,181 km² located in the centre of Hindu Kush Himalayas between India and china (Figure-1). Nepal stretches from 26° 22' to 30° 27' North latitude and from 80° 04' to 88 ° 12' East longitudes. The country looks roughly rectangular in shape with the length from east to west of about 885 km and width ranging from 130 to 260 km from south to north. It contains 8 of the 10 highest mountain peaks in the world, including Mount Everest (8848 m), although some of its low lying areas are only about 80 meters above sea level.

The country is divided into three broad ecological regions, i) The higher Himalayas in the north, ii) Hills and Valleys in the middle, and iii) Terai, an extension of Indo-Gangetic plain, in the south. Nepal is one of the most water-abundant countries in the world with its 6,000 rivers and rivulets, with total mean annual runoff of 224 billion cubic meters (BCM) and per capita water availability of 9,000 cubic meters (Nepal Climate Vulnerability Study Team, 2009).

2.2 Lakes of Nepal

There are many lakes within the country located in low altitudes to the high Himalayas stretching from the east to the west. Lakes are basically natural resources available for multiple uses. A lake consists of two distinct parts, the basin and the water body. A lake, in other words may be defined as an inland basin filled with water. One definition of "lake" is a body of water of 2 hectares (5 acres) or more in area (Source), however others have defined lakes as water bodies of 5 hectares (12 acres) and above, or 8 hectares (20 acres) and above. Charles Elton, one of the founders of ecology, defines lakes as water bodies of 40 hectares (99 acres) or more.

There are different studies and reports that Nepal has more than 6000 rivers, 3,252 glaciers, 2,323 glacial lakes and several tectonic and ox-bow-lakes. Among them, National Lake Conservation Development Committee (NLCDC) has enlisted 5,358 lakes in Nepal in its map based inventory released/prepared conducted program in 2009 (Ministry of Tourism and Civil Aviation, GoN, 2009). Among these lakes, altitude wise over 2,700 lakes (51%) are distributed below 500m, and 2,227 (42%) above 3,000m. Only 419 lakes (<8%) are in the mid hills of altitudinal range between 500m and 2,999m.

Table 1. Altitudinal Distribution of Lakes in Nepai			
Altitude (m)	Number of lakes		%
Below 100	1270	2712	50.62
100-499	1442	2712	50.02
500-999	77		
1000-1499	69		
1500-1999	125	419	7.82
2000-2499	114	2227	
2500-2999	34		
3000-3499	56		
3500-3999	60		
4000-4499	418		41.56
4500-4999	762		41.50
5000-5499	764		
above 5500	167		
Total	5358	5358	

The following table shows the altitude-wise distribution of lakes.

Table 1: Altitudinal Distribution of Lakes in Nepal

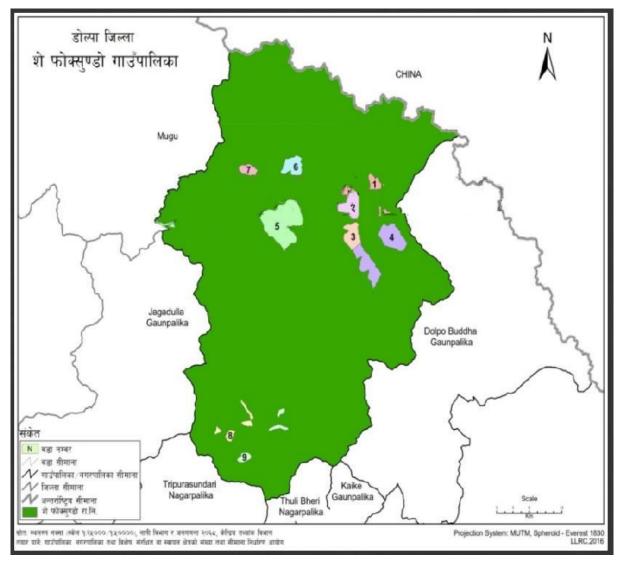
Source: NLCDC, 2009

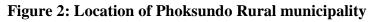
2.3 Objectives and Scopes of the work

The main objective of this study is to prepare scientific report of Phoksundo Lake of Dolpa through detail Bathymetric Survey and Topographic Survey of the lake using standard echo-sounder and total station or theodolites and other hydro-meteorological investigations and available related information. In particular, the study aims to:

- Carry out Bathymetric Survey of the lake to measure depth of the lake using echo-sounder.
- Carry out Topographic Survey around the lake to prepare topographic maps with contour lines with interval of 5m cover at least up to 25 m strip above the lake's water level and up to 10 m strip along the river channel in both banks for up to 500 m downstream from the lake outlet.
- To establish temporary bench marks at the proper site of the lake for reference.
- To carry out Hydrological investigations of the lake including discharge measurements (at least 2 with possible different gauge heights during the stay at the site) and collect water samples for the study of physical parameters including sediment and water quality of the lake.

The scope of the works are as following:


- Carry out water depth survey of the lake and calculated area, volume and other geometrical parameters
- Conduct topographical survey of the lake, cross section survey at Lake outlet and Lake inlet.
- Construct and fix 4 concrete pillar for bench marks at proper site of the lake for reference using DGPS.
- Collect water samples of different time for the study of physical and chemical properties of the water including pH, air temperature, water temperature, dissolved oxygen, turbidity, conductivity, BOD, COD, nitrate, iron sulphate and total hardness.
- Conduct discharge measurement at 2 possible different gauge heights at the outlet of the lake.
- Literature review and compilation of climatic data of the region to summarize the climatic condition of the lake and compilation of different studies
- Involvement of the local government authorities during the study period in coordination with "Shey Phoksundo National Park" office.
- Organize a workshop at MEWRI/DHM for the dissemination of the works done and to receive feedback and suggestion before the draft final report with concerned and related stakeholders.
- Prepare digital GIS map of the lake, preparation of different reports and posters for information dissemination about the findings of the study (including map and other important features of the lake)


3. Study Area

3.1 Phoksundo Lake: Dolpa

Lakes of Nepal are culturally important elements in the higher altitude areas and Phoksundo Lake of Dolpa district is one of them. Lakes/wetlands provide water for irrigation, maintains biodiversity, enhancing livelihoods of people through eco-tourism as the basis for cultural and spiritual development and so on.

Phoksundo Lake lies in Shey Phoksundo Rural Municipality of Dolpa District. The area of this rural municipality is 123.07 km² and total population is 3099. This municipality consist of 9 wards. Major part of this municipality belongs to Shey Phoksundo National Park, which is the largest national park of Nepal covering an area of 3,555 km². (Figure-2 & 3) (Population Census, 2011)

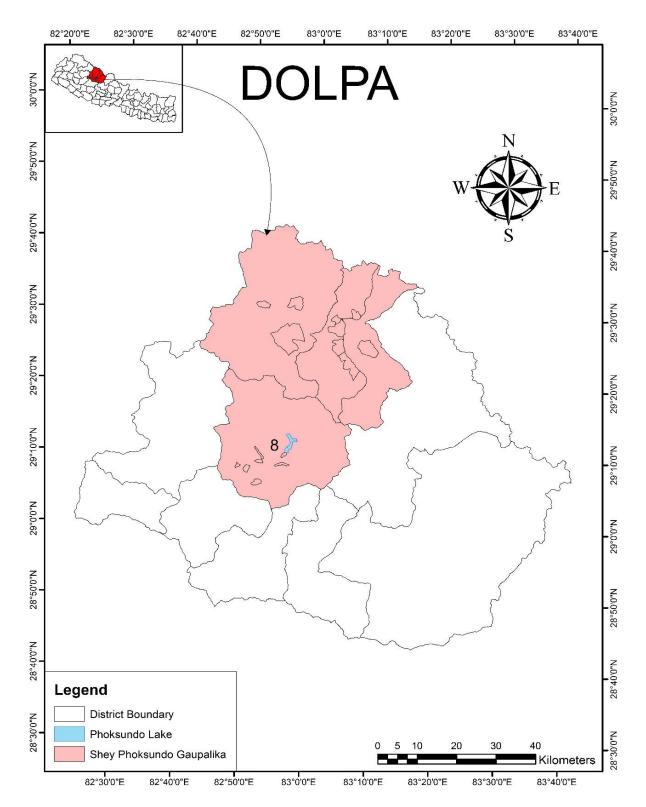


Figure 3: Location map of Phoksundo Lake, Dolpa

Figure 4: Phoksundo Lake (Looking towards Inlet from Outlet, Date: 27 May 2019)

It is remote yet accessible and is one of the most beautiful lakes in Nepal, situated at an altitude of 3588 meters above the mean sea level.

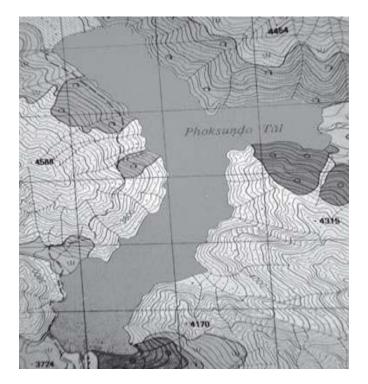


Figure 5: Topographical Map of Phoksundo Lake

3.2 Climate and Geography

Dolpa is the largest district of Nepal covering 5.36% of the total landmass of the country. Its elevation ranges from 1,525 to 7,625 m (5,003 to 25,016 ft). The district borders Tibet (China) on the north and

northeast, Jumla and Mugu districts of Karnali on the west, Myagdi, Jajarkot and Rukum on the south, and Mustang on the east. A large portion of the district is protected by Shey Phoksundo National Park. The name is derived from the 12th century *Shey Monastery* and the *Phoksundo Lake*, both of which are located in the district. The park protects endangered animals like the snow leopard, musk deer and the Tibetan wolf (Wa). *Shey Phoksundo* is the largest and the only trans-Himalayan National Park in Nepal. Dolpa district is one of the driest districts of Nepal. According to the climate station located at Dunai, the annual rainfall has recorded around 500mm. Similarly, the maximum temperature the district has observed is around 29°C in July and minimum temperature observed is below 0°C in January. The summary of the climate data is presented in below table.

Table 2. Kainfah and temperature, Station no. 512 (D1101)			
Station			28.93333333
No.	312	Latitude	(Degrees)
			82.91666667
Location	Dunai	Longitude	(Degrees)
Elevation	2058 m		
Month	Normal Rainfall (mm) (1993-2017)	Max Temperature (⁰ C) (1993-2017)	Minimum Temperature (⁰ C) (1993-2017)
January	13.2	10.6	-1.6
February	13.8	13.0	0.7
March	6.9	15.9	6.0
April	8.3	21.3	9.4
May	14.6	25.7	15.5
June	43.1	28.0	20.1
July	79.9	29.2	22.5
August	87.7	27.9	21.3
September	42.3	26.1	19.3
October	11.0	22.5	13.3
November	2.1	17.7	6.8
December	3.7	13.1	1.6

 Table 2: Rainfall and temperature, Station no. 312 (DHM)

Though the study area (Phoksundo Lake) is located at an elevation of 3588m above mean sea level, the Himalayan ranges, climate of that region is obviously different than the above-presented data. Past study and literature show that this region is highly vulnerable to climate change impact, as warming trends have been observed in most of the Himalayan region and the Middle Mountains (Shrestha, Wake, Mayewski, & Dibb, 1999). Similarly, the mean annual minimum temperature trend is higher in low altitude Terai and Siwalik range and lower in High altitude region while the trend pattern is reverse in mean annual maximum temperature with higher in high altitude region and lower in low lying Terai

plains. Also, most of the mid-western development region showed decreasing annual precipitation trend (Study of Climate and Climatic Variation over Nepal, 2015).

3.3 Hydrology and Drainage Pattern

Phoksundo Lake, an alpine fresh water oligotrophic lake (having poor nutrient supply), situated in Shey Phoksundo National Park, located at an elevation of 3,588 m above mean sea level at Dolpa District. According to the previous study, this lake has an area of 494 ha (1.91 sq mi) in size with water volume of 409,000,000 m³ (1.44×1010 cu ft) and discharge of 3.715 m³/s (131.2 cu ft/s). (Nepal Biodiversity Resource Book: Protected Areas, Ramsar Sites, and World Heritage Sites, 2007)

Figure 6: Map of topography and elevation of basin of Phoksundo (thick line 100m interval) (Source: https://www.google.com/maps/place/Shey+Phoksundo+Lake/)

In September 2007, Phoksundo Lake has been designated a Ramsar site (Bhandari, 2009). On the lake' southern end, the village of *Ringmo* sits on the 30,000- to 40,000-year-old landslide dam that formed the lake. Past the dam, the waters of the lake plunge over a 167 m (548 ft) high waterfall (Weidinger, 2005).

3.4 Geology

The Phoksumdo lake (3600 m asl.; area of 4.5-to-5 km²) is the second largest lake of Nepal; it owes its origin to the damming of the Suli Gad River by the large (4.5 km³) collapse of a mountain wall

DHM

(Dhaulagiri limestone) culminating at 5148 m, SE of the lake (Fort, Braucher, Bourles, Guillou, & Rimal, 2014).

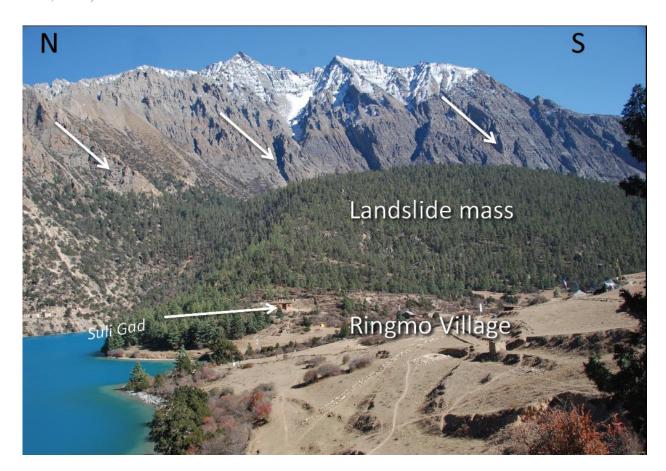


Figure 7: Ringmo-Phoksundo site

The damming of the lake was caused by rockslides bodies derived from different parts of the rocky face bounding the lake in its SE part.

Figure 8: View looking Northwards

The survey team walked around the periphery of the lake to collect information about the soil type and other condition of the lake around the area. Around the outlet area the land is almost flat where *Rigmo* Village is located. The bank of the lake is formed by rocky area in many parts. There is gravel and boulder mixed soil at the upper part of the lake. The shape of the lake is observed to be north-south elongated with a slight bend at the central part. The lake is surrounded by steep mountain slope composed of bedrocks along its eastern, northern and western sides. There are few ragged mounds observed on the right bank of the river where *Gonpa* (colloquially Gumba) is situated. The water drains out of the lake from the southern end through a 167 m high waterfall which is considered as the highest waterfall in Nepal.

4. Literature Review

A lake is a large body of water that is surrounded by land. The lakes are considered as natural reservoirs and they are important from diverse perspectives like water cycle, biological diversity, economic and social fame, tourism and biogeochemical cycle. Lake history shows the close relation between development of human civilization and the Lake. In addition, they are the important habitat for amphibian as well as aquatic lives and also important for religious values, festivals, sports, recreational activities etc. In addition, Lakes/wetlands also harmonize temperature, precipitation and absorbing greenhouse gases to moderate the climate change, accumulate water, soil and nutrient for agriculture and manage flood, drought and landslide to control natural disaster. Therefore, lake plays an important role to maintain and balance the ecological system. Loss, degradation, change and fragmentation of lakes are caused by both natural and anthropogenic factors. Climate change, outbursts of lakes due to landslides and siltation, watershed dried out are some natural factors whereas encroachment and unplanned land use are anthropogenic causes for the degradation of the lakes which in turn disrupt the entire ecosystem.

In Nepal, the study of lake was conducted in 2009 by researchers of Nepal Lake Conservation Development Committee (NLCDC), which is a government body established under the Ministry of Tourism and Civil Aviation in 2007. Experts were involved from the International Union for Conservation of Nature (IUCN) Nepal office, Nepal Academy of Sciences and Technology (NAST), National Trust for Nature Conservation (NTNC), and the Tribhuvan University, Central Department of Environmental Studies (TU-CDES). The initial study using topographic map showed altogether 5358 lakes across the country. DOAD (1993) reported 5000 lakes, 1380 reservoirs and 5183 village pond (National fisheries development plan-1992/93, 1993) while IUCN (1996) reported 163 wetlands in Terai and 79 in the hills and mountains (An Inventory of Nepal's wetlands, 1996). Similarly 3,808 glaciers and 1,466 glacial lakes have been identified in the high mountain region (Mool, Bajracharya, & Joshi, 2001). The inventory of glacial lakes was conducted from the perspectives of the potential Glacial Lakes Outburst Floods (GLOF). ICIMOD (2009) updated glacial lakes and found significant different in number and area of lakes. The total number of glaciers are found to be 3808 whereas number of glacial lakes decreased from 2,323 to 1,466, a reduction of 37%; and area decreased to 14%, whereas the average lake area increased by 33%. Among the significant lakes, Rara is the largest one covering an area of 800 ha, and Phoksundo is the longest one with its length 5.15km. Similarly, Dhau Dhundhun Tal is the highest placed lake in Mustang at an altitude of 5905m, and an unnamed lake is at 59 m altitude in Dhanusha district. (Lakes of Nepal: 5358 - A Map Based Inventory, 2009). The following maps and table shows high altitude lake in Nepal.

DHM

Table 3: High altitude lakes in Nepal

Name of Lake:	Dhau Dhundhun Tal
Topo- Sheet no:	2983-16
Code:	MS52
District:	Mustang
VDC:	Charan
Nearby City/Village:	Saukre (20Km)
Area:	4.75ha
Length:	350m
Breadth:	150m
Perimeter:	900m
Altitude:	5905m

In Nepal, there are few studies carried out for the bathymetric survey of Lakes. Tsho Rolpa, Imja, Thulagi glacial lakes were studied as these lakes were identified as potentially dangerous. In the early 1990, bathymetric studies were carried out for Lower *Barun* glacier lake (Kadota and Mool, 1993), the Imja glacier lake (Yamada, 1998; Department of Hydrology and Meteorolgy, 2014; Topographic and Bathymetric Survey of Imja Glacier Lake, 2009), Tsho Rolpa Glacier Lake (Mool et al., 1993; Kadota. 1994) and Thulagi glacier lake (Mool et al., 1995). More detailed investigation were carried in Tsho Rolpa glacier lake (Yamada, 1996), Thulagi glacial Lake (DHM, 1997). A. B. Shrestha et al, 2004 studied bathymetric survey of Tsho Rolpa Glacier Lake carried out in 2002 shows that the maximum depth measured was 140 m and volume of lake was 97.7×10^6 m³ before the lake lowering. Echo sounder was used for the first time in Tsho Rolpa Glacier Lake to determine the depth of the Lake. Similarly, the bathymetric survey of Imja Glacier Lake was carried with the help of inflatable boat with outboard motor and Echo sounder mounted on boat (Samos-Valenzuela et al., 2013).

DHM carried out "Bathymetric Survey of Phoksundo Lake in Dolpa District, Mid-Western Development Region of Nepal" in 2004 AD assuming the deepest lake, using echo-sounder instrument. Points were selected along lines of random positions to measure the depth of the lake. During this bathymetric survey, the maximum depth of the lake was found to be 145 m and the equipment used was Echo Sounder Bathy 500 (Analog). The frequency used for that echo-sounder Bathy 500 was 200 kHz transducer and further indicated that the frequencies set at 200 kHz in the transducer would reflect off Lake bottom's layer of underlying materials such as silt, vegetation or weeds and "fluid mud" as shown in the chart given in **Annex X** (DHM,2004). It was concluded that the depth of underlying deposited materials at the lake bottom would be 6 to 7 meter of fluid mud, silt type, vegetation etc. as mentioned in a reply letter sent by Mr. Frank Budz, the US Company (Syqwestinc) to queries of Mr. Jagat Bhusal, then DHM's section head of river hydrology, on 11 Aug 2004 concerning the interpretation of Phoksundo's bathymetric chart given in the **Annex X**.

The area of the lake was obtained as 4.95 km² and lake volume as 408.599 MCM. For the topographical survey theodolite was used. During this survey, details on the ground such as Lake boundary, outlet position, and details of end moraine dam, rocks etc. and all other important physical features, hydrographic features such as; streams was depicted from the ground, recorded in the field book. Sufficient spot heights were taken to draw contour lines.

Similarly, again in 2008 AD "Preparation of Bathymetric Map of Phoksundo Lake" survey was carried out. Bathymetric survey was carried out using echo-sounder. Only 36 random points of depth had been measured assuming that these measurements were sufficient to draw bathymetric map including the deepest point of the lake. GPS was used to locate the points of the measured depth. The maximum depth of the lake was found to be 202.41 m. The total area and volume of the lake was obtained as 5.1861 km² and 0.21 km³ respectively (Preparation of Topographic and Bathymetric Map of Phoksunod Lake, 2004, 2008). The following table shows the detail findings of both studies.

Parameters	Value (2008)	Value (June,
		2004)
Maximum depth, m	202.41	145
Surface area, km ²	5.1861	4.95
Shoreline, km		17.29
Maximum length, km	5.78	5.935
Maximum Width, km	1.052	1.807
Water volume, Mm ³	213.6	408.599

Table 4: Morphological Parameters of Phoksundo Lake 2008 and 2004 (DHM)

In 2010, DHM carried out "Preparation of Bathymetric Map of Phewa Lake" using tape, thread and weight and depth. The study measured 380 points of whose locations, latitudes and longitudes, which were recorded from GPS. The result showed that maximum depth of Phewa Lake was found to be 19.9 m at a location 28° 14' 46.1" and 83°56'29.8"E. The total area and volume of Phewa Lake was obtained as 411.51 ha and 30.49 million m³ with maximum width and maximum length as 1.81 km and 4.92 km respectively (Preparation of Bathymetric Map of Phewa Lake, 2010).

In continuation of the bathymetric survey of lakes, DHM carried out study on bathymetric map of Begnas Lake, east of Pokhara in Kaski district. The maximum and mean depths of Begnas Lake were found to be 11.2 m and 6.8 m respectively with lake surface area and volume of 3.16 km² and 21.5 million m³. The maximum length and width of lake were found to be 3.30 km and 1.76 km respectively (Preparation of Bathymetric Map of Begnas Lake, 2011). This lake was also studied by several other institutions and researchers in the past.

Similarly, DHM carried out bathymetric survey of Rupa Lake including topographic survey in 2015. The maximum depth was found to be 4.0m at a point 511404.8 E and 3115154.82N with an area, volume and mean depth of lake as 1.106 km², 2.548 million m³ and 2.3 m respectively. These findings were based on the measurement of 30 cross sections of the lake (Bathymetric Survey of Rupa Lake, 2015).

The study on Impact of Land Use on Water Quality of *Phewa* Lake Pokhara, Nepal mainly based on quantitative determination of selected physical and chemical parametric values that present in the water, where various intervention have been implemented (discharge from hotel and restaurants, fish farming, outlet of *Seti* channel in the lake and tributaries). The study indicates that the average sedimentation rate in the Phewa Lake for the period from March 1998 to 2004 is about 180000 cu. m. The total estimate average sediment contribution rate from the watershed was about 15cu.m. for the sample period. If this average annual sedimentation rate continues, 80% of the Phewa lake capacity would be silted up in the next 190 years virtually making the *Phewa* Lake useless. The authors further indicated that physiochemical parameters are destructive as found in natural surface water bodies (Raya, Sharma, & Gurung, 2008). Other study on the physio-chemical parameters of *Deepang* Lake in Pokhara Valley, Nepal (August 2009-January 2010) showed that the PH values were found mostly alkaline and were generally between 6.7 and 7.5; the concentration of free CO_2 ranged between 1.8 mg/l and 5.6 mg/l; dissolved oxygen value were found to be gradually increased from 6.4 mg/l in August to 8.7 mg/l in January; the maximum and minimum transparency were observed at 2.5 m (January) and 1.4 m (August); the maximum and minimum temperature of Lake were observed 25.6°C (August) and 17.7°C (January) during the investigation period. It was concluded all measured physicochemical parameter meet WHO Standard of Water Quality (Bastola, 2013).

DHM (2016) studied measurement of water quality and hoarding board installation at some of the rivers and lakes of Kathmandu, Pokahara, Butwal, Birgunj and Narayangadh. The studied lakes were *Taudaha* (Kathmandu), *Phewa* and *Begnas* Lakes (Pokhara). The water parameter measured were pH, dissolved oxygen, biological oxygen demand, chemical oxygen demand, total dissolved solid, electrical conductivity, nitrate, total hardness, magnesium, ammonia, iron, total coliform and E.coli. The study shows that there were spatial variation within lakes of Kathmandu Valley, and Pokhara. Most of the water quality parameters measured were within the desired limit given by national drinking water quality standard, 2062. In case of *Taudaha;* ammonia, iron, total coliform and E.coli, all the four sites were beyond the desired limit. *Begnas* and *Phewa* lakes were found to be within the desired limit given by national drinking water quality standard. However coliform and E.coli were detected beyond the desired limit. It was concluded that the agriculture and urban land use are the most contributing factors to the pollution of Lake water system.

5. Methodology

Bathymetry is the study of underwater depth of lake or ocean floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. A multi-beam echo sounder attached to a boat sends out a wide array of beams across a "swath" of the water body floor. Bathymetric (or hydrographic) charts are typically produced to support safety of surface or sub-surface navigation, and usually show bottom floor relief or terrain of lake as contour lines (called depth contours or isobaths) and selected depths (soundings), and typically also provide surface navigational information. Bathymetric maps (a more general term where navigational safety is not a concern) may also use a Digital Terrain Model and artificial illumination techniques to illustrate the depths being portrayed.

For the purpose of this study, the lake was divided into 50m x 50m grid. The measurement was followed the tentative grid point lines based on its geographical position. Section from S-N and N-S was surveyed; when one whole grid line is completed, a marking like flag was placed in the end point so it clearly indicated the surveyed area to move forward and continued the work. As well as a path was followed making an interval of 50 m using SW maps an android based apps. A continuous recording of latitude, longitude and depth were done at around 50m interval. The displayed depth from echo-sounder was recorded in GPS with its respective latitude and longitude. The different depths measured was also verified using the tag reel. Near the *Chholupu khola* at 14 m depth, the depth was tallied using tag reel and was tallied with the eco-sounder. Next to this, a depth of 40.8 m was also verified using tag reel and was tallied with the eco-sounder depth near *Gumba*. A standard echo-sounder, GPS, boat, tag reel, measuring tape was used for bathymetric survey. Besides, measurements were carried out twice at the deepest point of the Lake for verification.

Topographic survey was carried out to third order precision and the admissible error of closure were not exceed 12 K mm, where K is the distance in KM. The survey was carried out as described in ToR. In case of establishing permanent benchmark, the six bench marks at possible accessible and visible area were established according to the site condition in permanent boulders using steel rod drilled in boulder. The instruments and accessories that were used for the topographical survey included DGPS, total station (reflector and reflector less), GPS, paint etc.

6. Field Works

6.1 Preparatory Meeting at DHM

A meeting was held at DHM on 20th May 2019 to discuss about preparation and departure of fieldwork

to be carried in Phoksundo Lake. The discussion meeting focused on the following essential points:

- i) Life insurance of all field members
- ii) Boat for bathymetric survey and its transportation from airport to Phoksundo lake site.
- iii) Generator required for equipment's battery recharge
- iv) Contact of local person for porter arrangement

v) Start of field work

- a) Inspection of all equipments
- b) Lake Pooja to be performed by *Lama Gurus* for its religious values and cultural beliefs linked to the lake.
- c) Briefing to different local stakeholders, local people including Village Chief and other related local institutions.
- d) Reconnaissance survey of Phoksundo Lake and its surroundings for bathymetric and topographic surveys.
- e) Observation air temperature during the field work.
- f) Bench mark setting at a suitable place for topographic survey.
- g) Water sampling at selected sites and Lake Outlet.
- h) Discharge measurement at Lake Inlet and Outlet using Current Meter.

6.2 Testing of Echo sounder prior to field work

Testing of echo sounder was carried out at Indra Sarobar Lake in Kulekhani on 8th May 2019. The depths measured by echo sounder were verified manually using tag reel tied with iron weight. Both results showed the same depths at several points as shown in table 5.

Figure 9: Testing of Echo sounder at Indra Sarobar Lake, Kulekhani

Location. marti Sarobar, Referitant				
Date Depth measured by Echo		Depth measured by tag reel		
	sounder (m)	(m)		
2019.05.08	19.2	19		
2019.05.08	11	11		
2019.05.08	16	16		

Table 5: Test and verification of Echo-Sounder

Location: Indra Sarobar, Kulekhani

6.3 Bathymetric Survey

For determining geometric parameters and preparation of bathymetric map, the field survey was conducted from 26 May to 04 June 2019. The depth of Phoksundo Lake were measured using digital Echo Sounder CVS 126 made of Japanese company Koden Electronics. The depth measuring range of the echo sounder was up to 800m and the accuracy was $\pm 0.1\%$. The instrument was operated in dual frequency of 50 kHz and 200 kHz for depth measurement. Basically, low frequency have more

DHM

accuracy in higher depth and higher frequency is reliable for lower depth. The detail can be found in the link as follow.

http://www.raymarine.com/view/?id=197&fbclid=IwAR1s3ndk1rsHr99M-

<u>ZIfEs9zQXxqnakJxU0rzWWeNsZ_gBJ-qzUg8FF03xY#Frequency</u>. This model of echo sounder is more advanced than analog echo sounder in terms of the method of processing and displaying received signals. The detail specification of the echo sounder is presented in **Annex IV**.

The first line was followed by the centerline of the lake. The other measurements were based on the reference of first line by maintaining 50 m distance. The measured depth points were used to create the path line of that day. With its reference the next path line was created for other day. The same process was repeated continuously till the end of the work. GIS tools were used to carry out this process. The lines were converted to shape file and inserted in SW maps, an android based app of mobile phone, which made easier to take a path line in the lake for survey. Almost 4000 sites of nearly 50 m x 50 m grid point of the lake were located and tracked using GPS (Global Positioning System) to record the depth of the lake. The depth of the lake was also verified manually using the tag reel. The depth measured by echo sounder and the depth using tag reel was found to be exact. To find the deepest part of the lake, around 5 times the boat was moved making a big circle, then small circle in different places. The deepest part of lake was verified measuring the depths near and around twice.

6.4 Topographic Survey

All the members of the survey team walked around the lake, where accessible to select perfect location for the establishment of permanent benchmark, to overview general layout of the lake and vegetation cover around the lake. The team also thoroughly studied the 1:50,000 scale topographical map of sheet number 2982 16 published by the Survey Department of Nepal for the general overview of the lake and its location. The overview of general layout and vegetation of the inaccessible location was carried out through boat. Easily accessible locations were selected for the placement of permanent benchmarks using DGPS. The topographical survey work started establishing the DGPS benchmark. The benchmarks are established at accessible and visible sites.

The established benchmark becoming far though visible and straight from edge of the lake, the survey was delayed around 5 hours because of communication problem. The topographical survey was conducted as per the standards required and as per the scope of works according to ToR. Necessary Bench Marks were fixed at the accessible location using the Sanding DGPS, Topcon total station. DGPS benchmark point coordinates are picked by observing 6 hrs data from satellite on each base point. Traverse is carried out by total station within given accuracy. Errors on total station and DGPS were already calculated and eliminated. The accuracy of the DGPS was horizontal $\pm 8 \text{ mm} + 0.5 \text{ ppm}$ and

vertical $\pm 15 \text{ mm} + 0.5 \text{ ppm}$. The number of connecting satellite were observed as 20 to 37 in different stations. The cut off angle was 15° . Sanding DGPS, Topcon and Sokia were used to carry out the survey work from upstream of the lake to the farthest downstream outlet of the lake. Traversing was done using DGPS 1, DGPS 2 and cp1. The errors calculated was -0.019 m in easting and -0.012 in northing. Adjustment made in 3 benchmarks was +0.006 m easting and +0.004 m in northing.

The data obtained was in WGS 84. So this data was projected to Modified UTM 84 with an overlay on topo sheet which was basis for further calculation. Nepal has greater East-West expansion so as to increase accuracy for cadastral survey and various other purpose, UTM has been modified to MUTM (Modified UTM); Gauss-Krueger projection-based coordinate system, thus the "modified" designation. In this projection system Earth is divided in 120 zones each of 3⁰. Nepal has central meridian of 81⁰,84⁰ and 87⁰. The scale factor of 0.9999 is used for central meridian normally for 84⁰ and 00 55' east or west of central meridian has the scale factor of 1 (meaning no distortion). False Easting at central meridian is 500 000 m in order to keep all the coordinates within the country positive, and False Northing at the Equator is 0 m.

The topographic survey was conducted using total station and DGPS covering an area of approximately 91.40 hectares, which includes lake surroundings and river cross sections. The area of the lake was surveyed using DGPS. For the calculation of area, the DGPS base was fixed near the army camp, located at the edge of the lake. And the rover was used to survey the lake. The boat was propelled about 2 m far from the edge of the lake and the survey was carried out using DGPS. The area, length and width of the lake were calculated using CAD software.

For establishing the benchmarks, all the permanent ground control stations were fixed/marked with a cross-mark on permanent boulders with center 16 mm dia. Steel Rod and marking with paint. The detail of the established benchmark is as follows:

PHOKSUNDO LAKE SURVEY PROJECT DOLPA DETAIL SURVEY (Bathymetry & Topo)

DESCRIPTION CARD OF GROUND CONTROL POINT

Station Name: DGPS-1		
No. of satellite connection: 37	D 2	
Date: 2019. 05.26	R3	
Time: 06-11 AM		
Station Type: Permanent		
Location	\mathbf{k} R1 R2	
District: Dolpa	$R1 \longrightarrow 3.75m$ Tree	
Rural Municipality: Shey Phoksundo	$R2 \rightarrow 1.34m$ Boulder	
Ward No: 8	$R3 \rightarrow 2.42m$ Boulder	
Land Type: Peg on boulders		
Description:		
This DGPS permanent B.M point is located in right bank of lake at 2 nd nose of hill opposite side of Gumba.		
Co-Ordinates		
Northing: 3229162.140 m Easting: 396794.693m Elevation:3590.253 m		
Location Sketch	Photograph	
Ogen Ogen <t< td=""></t<>		

DHM

Station Name: DGPS-2 No. of satellite connection: 37 **R**3 Date: 2019. 05.26 Time: 06:45-11 AM Station Type: Permanent **R**2 **R**1 Location Boulder R1 → 2.75m District: Dolpa R2→ 2.34m Boulder Rural Municipality: Shey Phoksundo R3→ 3.42m Boulder Ward No: 8 Land Type: Peg on boulders **Description:** This DGPS permanent B.M point is located in left bank of lake at front side of Gumba. **Co-Ordinates** Northing:3228552.149 m Elevation: 3609.779m Easting: 397491.746m Location Sketch Photograph DGPS 1 DGPS 2 2018 Google Image © 2019 DigitalGlob

Station Name: DGPS-3 No. of satellite connection: 22 R3 Date: 2019. 05.28 Time: 06:30-12 Noon Station Type: Permanent **R**1 R2 Location R1 → 3.7m Tree District: Dolpa R2→ 1.84m Boulder Rural Municipality: Shey Phoksundo R3→ 2.42m Boulder Ward No: 8 Land Type: Peg on boulders **Description:** This DGPS permanent B.M point is located in inlet at Chholupu. DGPS 4 is visible from here. **Co-Ordinates** Northing:3233074.611 m Elevation: 3591.512m Easting: 396884.201m Location Sketch Photograph DGPS 3 DGPS 4

Station Name: DGPS-4 No. of satellite connection: 22 **R**1 Date: 2019. 05.28 Time: 07:00-12 Noon Station Type: Permanent **R**2 Location Tree ► 2.389m R1 -District: Dolpa Boulder Rural Municipality: Shey Phoksundo R2→ 1.66m R3→ 2.49m Boulder Ward No: 8 Land Type: Peg on boulders **Description:** This DGPS permanent B.M point is located in inlet area Chholupu. Co-Ordinates Northing: 3233033.858 m Easting: 396883.832m Elevation: 3591.576m Location Sketch Photograph DGPS 3 DGPS 4

Station Name: DGPS-5	
No. of satellite connection: 20	DO
Date: 2019. 05.29	R2
Time: 07:00-11 AM	$\overline{\mathbf{h}}$
Station Type: Permanent	
Location	₹ R1 R3
District: Dolpa	$R1 \longrightarrow 2.75m$ Tree
Rural Municipality: Shey Phoksundo	$R2 \rightarrow 1.34m$ Boulder
Ward No: 8	$R3 \rightarrow 0.42m$ Boulder
Land Type: Peg on boulders	
Description:	
This DGPS permanent B.M point is located in Sag	ar Lek intake area, and 100m away from lake edge.
Co-Ordinates	
Northing: 3231969.774m Easting: 399764.77	2m Elevation: 3591.590m
Location Sketch	Photograph
DGPS 5 DGPS 6	

DHM

Station Name: DGPS-6	
No. of satellite connection: 20	D2
Date: 2019. 05.29	R3
Time: 07:15-11 AM	<u>ا</u>
Station Type: Permanent	
Location	R1 R2
District: Dolpa	$R1 \longrightarrow 3.75m$ Tree
Rural Municipality: Shey Phoksundo	$R2 \longrightarrow 1.34m$ Boulder
Ward No: 8	$R3 \rightarrow 2.42m$ Boulder
Land Type: Peg on boulders	
Description:	
This DGPS permanent B.M point is located in Sagar Lek, around	50 m away from fifth B.M.
Co-Ordinates	
Northing: 3231972.668 m Easting: 399791.813m Eleva	ation: 3592.070m
Location Sketch Pho	tograph
DGPS 5 DGPS 6	

6.5 Possible Errors in Survey and Bathymetry

The term Global Navigation Satellite Systems (GNSS) refers to a satellite constellation used to provide geospatial position, navigation and timing. Global Positioning System (GPS) of the US, the GLObal'naya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) of Russia, Galileo of Europe, Compass/BeiDou Navigation Satellite System (CNSS) of China and NAVigation with Indian Constellation (NAVIC) of India are examples of Global/Regional - Navigation Satellite Systems (NSS). Atmospheric delay in the ionosphere and neutral atmosphere are major error sources of GNSS measurements. Ionospheric errors are mostly eliminated by observing at two or more frequencies. But the tropospheric delay is a valuable meteorological information. Ground based GNSS receivers are used to measure geospatial position.

GPS signals can also be affected by multipath issues, where the radio signals reflect off surrounding terrain; buildings, canyon walls, hard ground, etc. These delayed signals **cause** measurement **errors** that are different for each type of **GPS** signal due to its dependency on the wavelength.

The arrangement of satellites in the sky also affects the accuracy of GPS positioning. The ideal arrangement (of the minimum four satellites) is one satellite directly overhead, three others equally spaced nearer the horizon (but above the mask angle). Imagine a vast umbrella that encompasses most of the sky, where the satellites form the tip and the ends of the umbrella spines.

GPS coordinates calculated when satellites are clustered close together in the sky suffer from **dilution of precision** (DOP), a factor that multiplies the uncertainty associated with User Equivalent Range Errors (UERE - errors associated with satellite and receiver clocks, the atmosphere, satellite orbits, and the environmental conditions that lead to multipath errors). The calculation of DOP results in values that range from 1 (the best case, which does not magnify UERE) to more than 20 (in which case, there is so much error the data should not be used). According to Van Sickle (2001), the lowest DOP encountered in practice is about 2, which doubles the uncertainty associated with UERE.

GPS receivers report several components of DOP, including Horizontal Dilution of Precision (HDOP) and Vertical Dilution of Precision (VDOP). The combination of these two components of the threedimensional position is called PDOP - position dilution of precision. A key element of GPS mission planning is to identify the time of day when PDOP is minimized. Since satellite orbits are known, PDOP can be predicted for a given time and location.

Total station is a device used in surveying. Like any other devices, total station also have some sources of error which can affect the surveying report. Total station measure angles with some degree of

imperfection. These imperfections result from the fact that no mechanical device can be manufactured with zero error.

In the past very specific measuring techniques were taught and employed by surveyors to compensate for minor mechanical imperfections. With the advent of electronic total station, the mechanical errors still exist but are related to in a different way.

Horizontal collimation error exists when the optical axis of the instrument is not exactly perpendicular to the telescope axis. The two most common errors are reading an angle incorrectly and/or entering incorrect information into the field book. Another common (and potentially disastrous) error is an incorrect instrument or rod height. The optical plummet or tribrachs must be periodically checked for misalignment. This would include total stations with laser plummets. (Source: <u>https://www.e-education.psu.edu/geog160/node/1924)</u>

There may be some errors occurred during bathymetry. Such errors are mainly due to handling of transducer while in operation. If the submerged transducer could not place vertically and stably, the value of the depth may observe different in the same location. These are because of water current, moving boat and installation of transducer in the boat.

6.6 Water Sample Collection and handling

Before taking the water sample, both hands were washed. The bottles used for water sample was 500ml. The bottle was plunged into the water (lip of bottle first) to a depth of approximately 20 cm to 30 cm (~1foot) below the surface of water. In case of bottle overfilled, small amount of water was poured leaving at least 2cm to 3cm of air space at top of bottle to allow for adequate mixing and replaced the lid tightly. Date and time of sampling was noted along with bottle numbering and sample location. The collected samples were then carefully safely packed in the box. The collected sample were then transported to Kathmandu and delivered to the laboratory for detail analysis.

Water Temperature, pH, turbidity, conductivity were measured in the field. For other properties like dissolved oxygen, BOD, COD, nitrate, iron, sulphate and total hardness; collected water sample were tested in the laboratory at Kathmandu. The samples collected at different locations is given in the following table and map. Altogether four different sites were selected for water sampling. The measured values of pH and EC were found be within the standard range as specified by National Drinking Water Quality Standard, 2062.

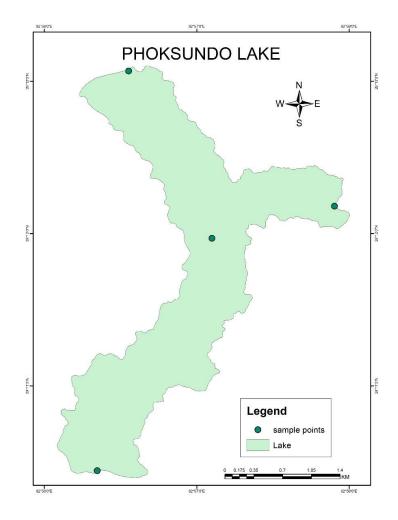

Sample	Location	Latitude	Longitude	pН	EC, µS/cm	Water	Time
site		(Degrees)	(Degrees)	(6.5-8.5)*	(<1500)*	Temp ⁰ C	
	Near Chholupu			8.2	254	8.3	8:30 AM
2	Near Sagar <i>Lek</i>	29.205047	82.962359	8.3	256	7.7	9:50 AM
3	Near Center	29.193204	82.950438	7.9	254	8.6	3:15 PM
4	Near Gumba	29.179394	82.941184	8.3	254	6.9	5:25 AM

Table 6: Location and measurement of physical parameters measured at the site

National Drinking Water Quality Standard, 2062

Table 7: Location of site for w	water sample collection
---------------------------------	-------------------------

Sample	Location	Latitude	Longitude	Date	Time
site		(Degrees)	(Degrees)		
1	Chholupu <i>Lek</i> inlet	29.21762	82.942171	31.05.2019	8.00 AM
2	Sagar <i>Lek</i> inlet	29.20466	82.965537	01.06.2019	7.30 AM
3	Near Center	29.198394	82.952359	01.06.2019	9.00 AM
4	Lake Outlet	29.174307	82.936966	04.06.2019	6.30 AM

6.7 Discharge Measurement

Phoksundo Lake is the important source of water for Thuli Bheri River. The released water about after 500 m south of lake, forms the majestic fall of about 167 m. Discharge measurement at outlet and inlets of Phoksundo lake were carried out using price type current meter by wading method. Two discharge measurements were carried out at the outlet of lake on May 28 and 30, 2019, whereas one measurement each at Chholupu and Sagar *Lek* inlets of Lake, were carried out on May 29. The suitable sites were selected at both inlets and outlet of the Lake. The number of sections taken at inlets were 14 and 16 whereas at the outlet it was 34 sections. The discharge were measured by current meter using wading method as the water depth was less than 1m. The discharge were measured at 0.6 depth.

6.8 Instruments used in the field and their features

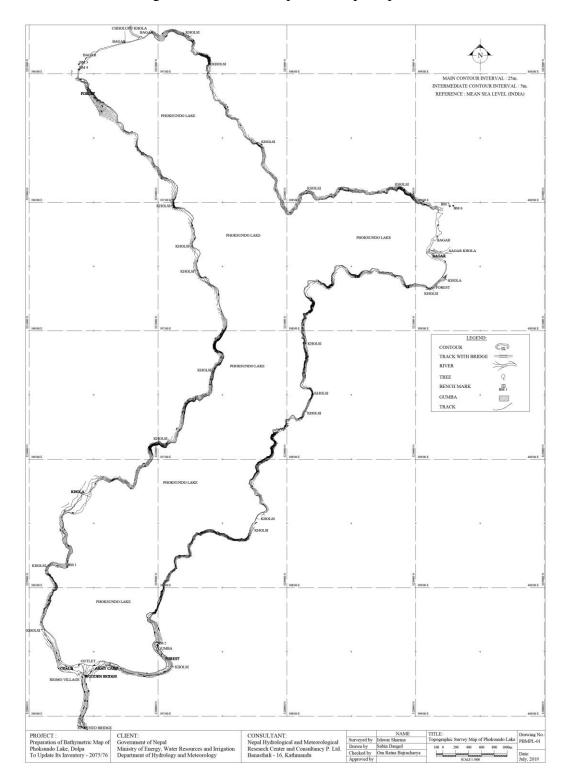
1. Echo Sounder

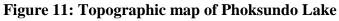
Instrument	: Echo Sounder
Company	: Koden (Japan)
Frequency Used	: Dual Frequency (Checked with 50 kHz and 200 kHz time and again)
Model	: CVS 126
Depth Range	: up to 800 m
Accuracy	$1 \pm 0.1\%$

2. GPS

Instrument	: GPS
Company	: Garmin
Model	: Oregon 700
Accuracy	: ±3m
GPS Signal Received	: GPS + GLONASS dual mode

- 3. Total Stations
- 4. DGPS


Instrument	: DGPS
Model	: Sanding T66
Satellite Visible	:>37
Cut off Angle	: 15°
P Dop	: 1.32
Accuracy: Horizontal	: ±8 mm + 0.5 ppm
Vertical	: $\pm 15 \text{ mm} + 0.5 \text{ ppm}$


- 5. EC Meter and pH meter
- 6. Price Type current meter
- 7. Rope and Inflated boat

7. Results and Discussion

7.1 Topographic, L and X Section Map

Based on the survey data the topographic, L and X section and other map are prepared. The topographic map of the lake is shown in figure 11. The A0 size printed map are placed in **Annex VI**.

The width of the lake were calculated along the cross sections. The length of the lake has been calculated joining the center point of each cross section perpendicular to it. The length and width are as shown in Figure 12.

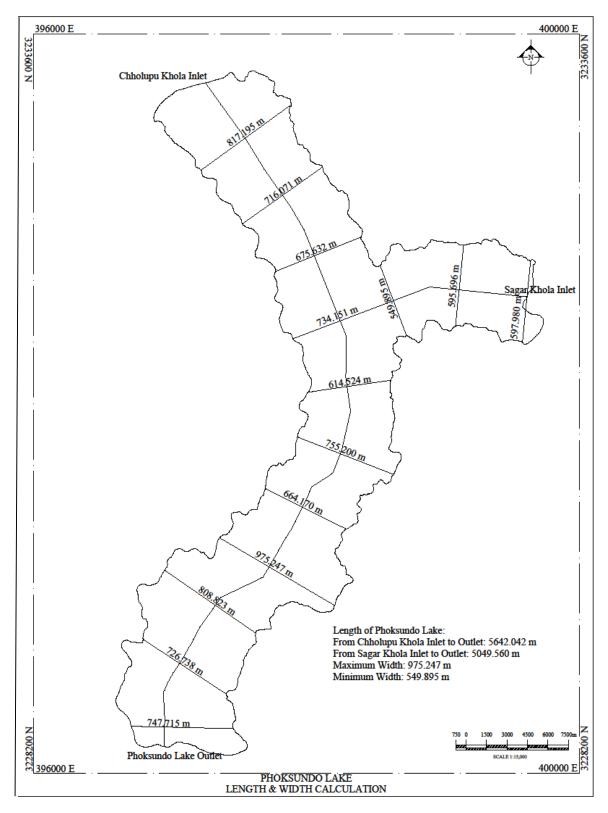


Figure 12: Calculated Length and width of Lake from survey data

The following morphometric parameters of Lake are calculated from the survey.

Parameters	Value
Shape	Y- Shape
Maximum depth (m)	136.20
	Location: 29.18369° and
	82.94256^{0}
Elevation (m)	3588.85 (Outlet)
Surface area (km ²)	4.849
Shoreline (m)	18295.269
Length of Lake (m) Chholupu khola inlet to outlet	5642.042
Length of Lake (m) Sagar khola inlet to outlet	5049.560
Minimum Width (m)	549.895
Maximum Width (m)	975.247
Volume (MCM)	398.73

Table 8: Morphometric parameters of Phoksundo Lake

The printed L-section and X-section of Phoksundo Lake and X-section of inlet and X-section of outlet map are presented in **Annex VII**.

7.2 Bathymetric Survey

7.2.1. Bathymetric map of Phoksundo Lake

The measured and recorded depth points of lake are shown in figure 13. The point highlighted in red color indicate the location of the deepest point of the lake. The deepest part of the Lake was recorded as **136.20m** at location with latitude and longitude 29.18369⁰ and 82.94256⁰ respectively. The measured horizontal distances and the corresponding depths were plotted on the topographic map of the lake. The contour lines were drawn using interpolation and extrapolation techniques. The contour lines were drawn at an interval of 5 meters. The map are generated with ARC GIS software. Figure 14 shows the bathymetric map of Phoksundo Lake and A0 size bathymetric map is attached in **Annex**

VIII.

Raw data from the survey was converted to Triangular Irregular networks (TIN) and then to 20m * 20m grid size raster file, which is a digital means to represent surface morphology using ArcGIS software. The parameters like contour, volume and area were all computed from the TIN using Surface Contour and Surface Volume tool respectively in ArcGIS. Above computed values were then used to prepare Hypsometric curve, and Elevation-Area- Volume Curve.

The other method for volume calculation like kriging interpolation and IDW were also tested but TIN was found more reliable and commonly used technique. Some references who has also adopted the same tools in calculation of volume and area in bathymetry.

http://lakes.chebucto.org/DATA/morphology.html?fbclid=IwAR3f5yNISqf4nd-

lworlcCdL20078aAkyCVcANYvLYgjKnfbynpCtY6BigA#lmax

http://resources.esri.com/help/9.3/arcgisengine/java/gp_toolref/3d_analyst_tools/how_surface_volume_3 d_analyst_works.htm

The reference level of water surface for bathymetry is calculated by averaging the different reference level of water surface from inlet to outlet of the Lake calculated in L-section.

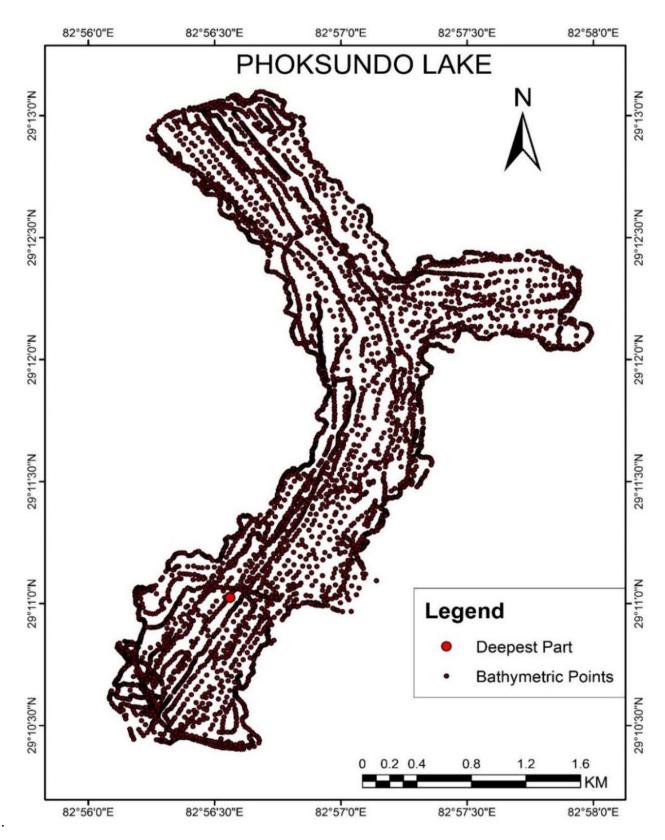
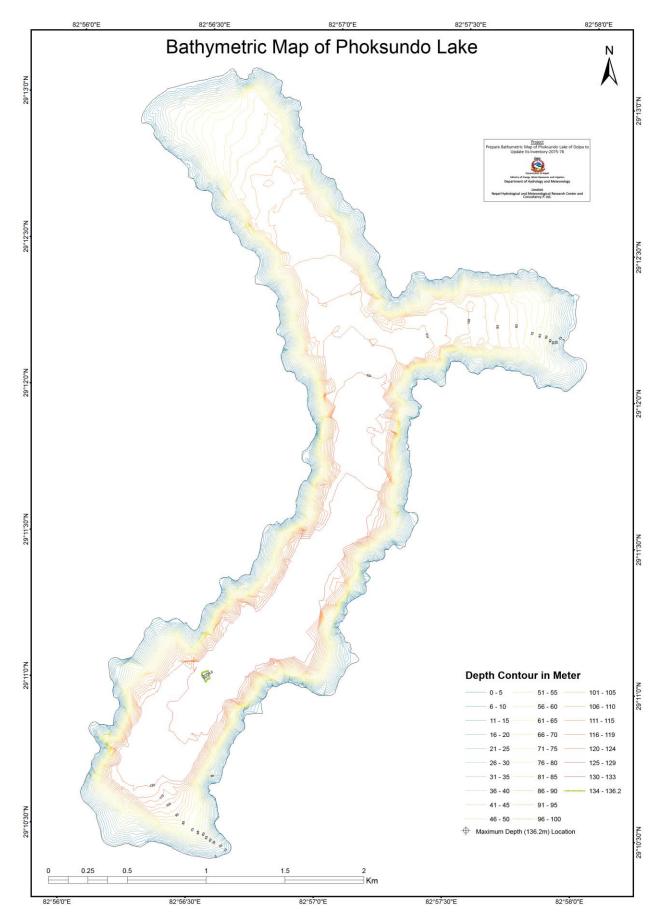
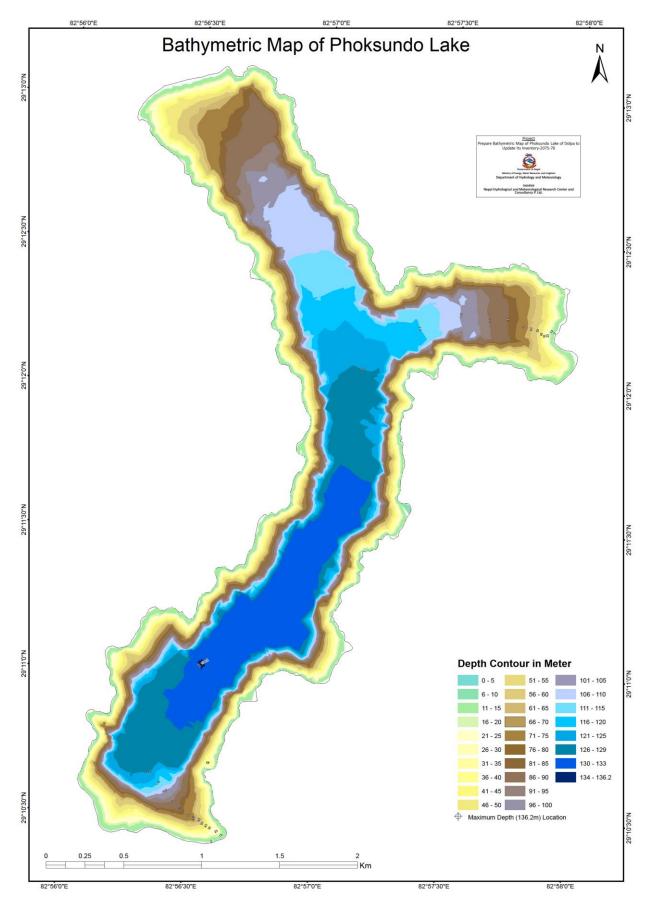
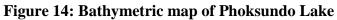
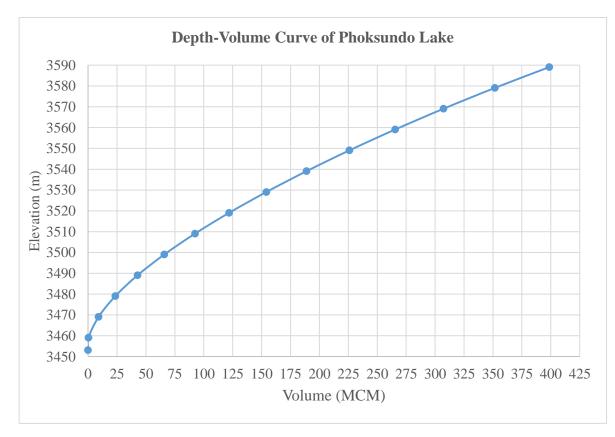
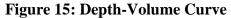
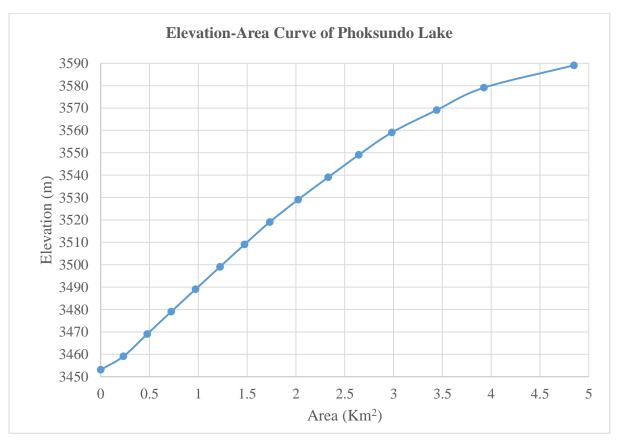





Figure 13: Measurement points of Bathymetric Survey

Nepal Hydrological and Meteorological Research Center and Consultancy P. Ltd.




7.2.2. Depth-Volume Relationship


The area of the Lake and the area between two consecutive contour lines were determined from GIS data base of bathymetric map of Lake. The area between two consecutive contour lines was measured and GIS data base was prepared using software Arc Info and Arc View. The volumes of lake were then calculated by multiplying the measured area with the average depth. Table 9 below shows the relation of depth ranges with area and volume between two consecutive contour lines. The depth–volume, depth-area and depth-area-volume relationship of the lake is shown in figure 15, 16 and 17 respectively. The total water volume of the Lake is about 398.73 million cubic meter.

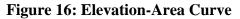

RL (m)	Depth Contour (m)	Incremental Area (Km ²)	Cumulative Area (Km ²)	Incremental Volume (MCM)	Cumulative Volume (MCM)
3453.08	0	0	0	0	0
3459.08	10	0.23	0.23	0.35	0.35
3469.08	20	0.24	0.48	8.77	9.12
3479.08	30	0.25	0.72	14.50	23.62
3489.08	40	0.25	0.97	19.19	42.81
3499.08	50	0.25	1.22	23.19	66.00
3509.08	60	0.25	1.47	26.48	92.48
3519.08	70	0.26	1.73	29.51	121.99
3529.08	80	0.29	2.02	32.23	154.22
3539.08	90	0.31	2.33	34.68	188.89
3549.08	100	0.31	2.64	37.10	225.99
3559.08	110	0.34	2.98	39.48	265.47
3569.08	120	0.46	3.44	41.87	307.34
3579.08	130	0.48	3.93	44.37	351.71
3589.08	136.2	0.92	4.85	47.02	398.73

Table 9: Depth-Volume relationship

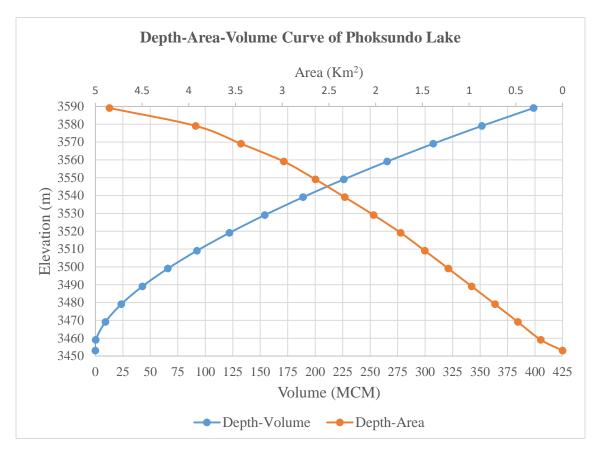
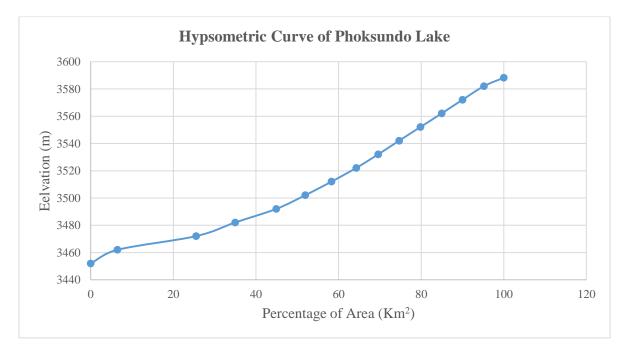
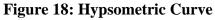




Figure 17: Depth-Area and Volume Curve

7.2.3. Hypsometric Curve

The relation between cumulative depths of the Lake with its respective area in percentage is shown in figure 18.

7.3 Discharge Calculation

The locations of discharge measurement and discharge volume of different sections are presented in table 10. The results showed that outlet discharge is 3 to 4 times more than the inlet discharges. This differences might have been due to several reasons like: Phoksundo Lake is surrounded by snow - capped-mountain in all directions. The sources of water to the lake are small streams originated from the surrounding Himalayas. The seepage of the melt water from snow-capped mountain play an important role in contribution to the lake which was also seen in field. Also, during winter season, snow gets accumulated and melts during summer season. Snowmelt has great contribution to stream flow in a river. Similarly groundwater contribution to river flow, generally called base flow, often accounts for a significant proportion of total flow rate, especially during the dry season. The main reason for higher discharge at the lake outlet of Phoksundo Lake compared to Lake Inlet can be attributed to these factors of occurrence of snowmelt and base flows. The study of snowmelt contribution using snow cover area data and monitoring of hourly/daily water level of lake at the inlet and outlet are necessary for detail investigation for the differences seen in the lake outlet discharge.

The discharge calculated data sheet are presented in Annex I.

Location	Measure ment date & time	Latitude (degrees)	Longitude (degrees)	Gauge Height (m)	Width (m)	Area (m ²)	Mean Velocity (m/s)	Discharg e (m ³ /s)
Inlet 1, Chholupu	29.05. 2019	29.2195	82.94114		14	5.42	0.789	4.274
Inlet 2, Saagar Paas	7: 10AM 9:30 AM	29.2034	82.96674		16	7.02	0.932	6.543
Outlet	28 and 30, May	29.1743	82.93696	1.07	34	16.9 2	1.069	18.094
	2019 11:30AM			1.09	34	17.1 8	1.075	18.477

Table 10: Summary of discharge measurements at three different locations of Phoksundo Lake

7.4 Water Quality and Sediment Analysis

The values of concentration of suspended sediment measured at Chholupu Lek intake, and Sagar Lek intake are given in the following table 11 and 12.

Source: Chholupu Lek, Intake											
Location : Phoksundo Lake	Latit degre	ude : 29.1 ees	21762	2 Longitude: 82.942171 degrees							
Parameters	Units	Result		Methods used							
Sand & Silt	mg/l	3.2	2540	D. ALPHA 23rd EDITION							

Table 11: Suspended sediment, Chholupu Lek Intake

Table 12: Suspended sediment, Sagar Lek Intake

Source: Sagar Lek Intake Location : Phoksundo Lake		itude: 29 rees	.20466 Longitude: 82.965537 degrees
Parameters	Units	Result	Methods used
Sand & Silt	mg/l	3.8	2540 D. ALPHA 23rd EDITION

The following table 13 shows the values of biological properties of Lake Water measured at center of the Lake. All the measured values were found to be within the standard range as specified by National Drinking Water Quality Standard, 2062 (2004) and WHO Guideline Values.

Source: Center of Lake												
Location : Phoksundo Lake Latitude: 29.198394 degrees Longitude: 82.952359 degrees												
		WHO										
Parameters	Units	GV	NOWQS	Result	Methods used							
		CHE	MICAL									
					4500-OA, APHA, 23rd							
Dissolved Oxygen	mg/l	>5	>5	5.7	EDITION							
Biological Oxygen					5210 B., APHA, 23rd							
Demand	mg/l	<30	<30	4.7	EDITION							
Chemical Oxygen					5220 B., APHA, 23rd							
Demand	mg/l	<250	<250	12	EDITION							

The values of water quality parameters measured at the outlet of lake as given in the table 14 were found to be within the standard range as specified by National Drinking Water Quality Standard, 2062 (2004) and WHO Guideline Values.

DUM			
		71	1 1
	,,	н	Λ/I
DIM		11	111

Source: Outlet					
Location : Phoksundo Lake		Latitude 29.174307 degrees			Longitude 82.936966 degrees
			NDW	Resul	
Parameters	Units	WHO GV	QS	t	Methods used
		PHYSIC	CAL		
					2130 B, APHA, 23 rd
Turbidity	NTU	5	5 (10)	2	EDITION
					2540 D. APHA,
Sand & Silt	mg/l			<1.0	23 rd EDITION
		CHEMIC	CAL		
	mg/l as				2340 C, APHA, 23 rd
Total Hardness	CaCO3	500	500	132	EDITION
			50		4500-NO3- B.,
Nitrate	mg/l	50	(Max)	0.9	APHA, 23 rd EDITION
			250		4500-SO4. APHA,
Sulphate	mg/l	250	(Max)	41.9	23 rd EDITION
					3111 B, APHA, 23 rd
Iron	mg/l	0.3	0.3 0	0.04	EDITION

Table 14: Chemical Properties of Lake water

The laboratory results on water quality and sediment analysis is presented in the Annex II.

8. Conclusion and Recommendation

This study concludes that the deepest point of the Lake is **136.20 m**. The echo sounder used for this survey was KODEN CVS 126 of whose frequency of transducer was set at 50 kHz and 200 kHz. This echo sounder has capacity to measure water depth of 2.5 m to 800 m. The bathymetric map of Phoksundo Lake is prepared based on the measured data. The total volume of water stored in the Lake is calculated as 398.73 MCM.

The surface area, perimeter (shoreline), length from Chholupu khola inlet to outlet and Sagar khola inlet to outlet, maximum width and minimum width of the lake are calculated as 4.849 km², 18.29km, 5642.042m, 5049.560m, 975.247m and 549.895m respectively.

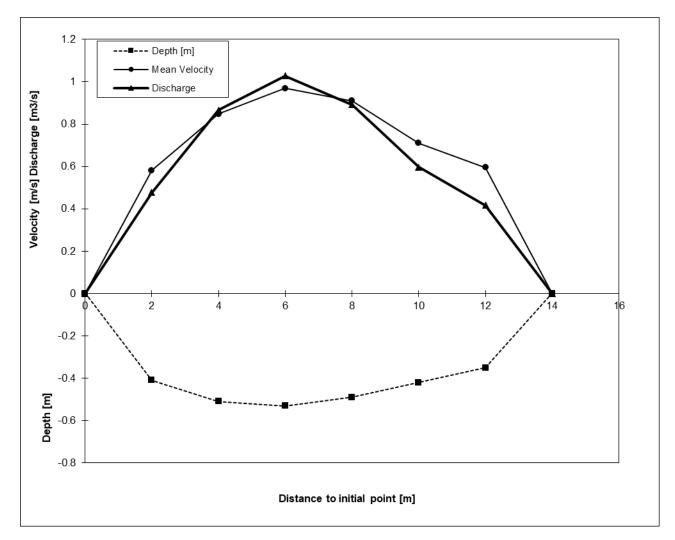
The topographic map of Phoksundo Lake is prepared showing its shoreline and different locations. Lsection and X-section map of Lake is prepared. Similarly, L-section and X-section map of inlet and outlet of Lake are prepared.

The suspended sediment measured at two inlet points are calculated as 3.2 mg/l and 3.8 mg/l respectively. Further study on sedimentation should be essential to calculate the sediment deposition.

Chemical analysis of lake water demonstrated that the measured chemical parameters like, DO, BOD, COD, Nitrate, Iron, Sulphate, total hardness are found to be within standard range as specified by National Drinking Water Quality Standard, 2062 (2004) and WHO Guidelines Values.

Local people are using the lake water for drinking and other domestic purposes.

Discharge measurement carried at the outlet of the Lake shows higher values compared to inlet flow. The high discharge value at lake outlets can be attributed to snowmelt and base flow contributions. Phoksundo Lake is snow and rain- fed lake and sources of water to the lake are small streams originated from the surrounding Himalayas.


The study of snowmelt contribution using snow cover area data and monitoring of hourly/daily water level of lake at the inlet and outlet by establishing automatic water level recorder as well as meteorological stations including snow gauges are necessary for detail investigation.

Routine field investigation to determine water equivalent of snow and snow depth are also recommended. Additional test for chemical parameters of Lake Water are required.

It is also recommended to produce a leaflet or booklet of Phoksundo incorporating summary of the results of this study.

Annex I

Station No.: Meas. No.: 3 River No.: Phoksumdo Lake Computed: Date:	Dis	char	ge Sh	ieet																	
Location: Intake Date: Date: Date: 5/29/2019 Discharge Measurement Notes Date: Width in m: 14.00 Area in m? 5.42 Mean velocity in m?s: 0.789 Discharge in m?s: 4.274 Party: BJ Counter No: Meter No: Price Type 622 Rated on: Image: Counter No: Meter No: Price Type 622 Rated on: Image: Counter No: m. upstream/dow nstream of gauge Location of measuring site: Image: Counter No: Meter No: Price Type 622 Rated on: Image: Counter No: Meter No: Price Type 622 Rated on: Image: Counter No: C	-		0													Mea	s. No.:		3		
Date: 5/29/2019 Checked: Date: Date: Width in rx 14.00 Area in m? 5.42 Mean velocity in m/s: 0.789 Discharge in m?/s: 4.274 Party: BJ Counter No: Meter No: Price Type 622 Rated on: Discharge in m?/s: 4.274 Weight: Distance from currentmeter to the bottom of the weight in rr. Image: Counter No: Meter No: Price Type 622 Rated on: Location of measuring site: Image: Counter No: Meter No: mu upstream/dow nstream of gauge Time 7:10 7:50 Meather: Meather: Mean Gauge height: Air temperature: Weather: Meather: Remarks: S Verticals >10 % of Discharge O Verticals with missing angle correction Vert. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff.11 1.000 0.009 0.998 0.998 0.996 0.996 0.996 0.996 0.996 0.996 0.996	Rive	r No.:		Phoksi	undo L	.ake										Corr	nputed:				
Date: 5/29/2019 Checked: Date: Date: Width in rx 14.00 Area in m? 5.42 Mean velocity in m/s: 0.789 Discharge in m?/s: 4.274 Party: BJ Counter No: Meter No: Price Type 622 Rated on: Discharge in m?/s: 4.274 Weight: Distance from currentmeter to the bottom of the weight in rr. Image: Counter No: Meter No: Price Type 622 Rated on: Location of measuring site: Image: Counter No: Meter No: mu upstream/dow nstream of gauge Time 7:10 7:50 Meather: Meather: Mean Gauge height: Air temperature: Weather: Meather: Remarks: S Verticals >10 % of Discharge O Verticals with missing angle correction Vert. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff.11 1.000 0.009 0.998 0.998 0.996 0.996 0.996 0.996 0.996 0.996 0.996	Loc	ation:		Intake												Date	ə:			I I	
Discharge Measurement Notes Date: Width in m: 14.00 Area in m?: 5.42 Mean velocity in m/s: 0.789 Discharge in m/s: 4.274 Party: BJ Counter No.: Meter No.: Price Type 622 Rate on: Usance from currentmeter to the bottom of the w eight in m:					2019														I I		
Width in π 14.00 Area in m ² : 5.42 Mean velocity in m/s: 0.789 Discharge in m ² /s: 4.274 Party: Weight: BJ Counter No.: Meter No.: Price Type 622 Rated on: Distance from currentmeter to the bottom of the weight in m m. upstream/downstream of gauge Time 7:10 7:50 m. upstream/downstream of gauge Weight: Air temperature: Weather: Mean Gauge height: Air temperature: Weather: Remarks: 5 Verticals >10 % of Discharge of Verticals >10 % of Discharge of Verticals with missing angle correction Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. 11 1.000 1.000 0.092 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.992 Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 <	D 0			0, 20, 2	.010		Dia	~~h	ara	~ Mc	226111	romo	nt Na	otae						I I	
Party: BJ Counter No.: Meter No.: Price Type 622 Rated on: Ustance from currentmeter to the bottom of the w eight in mt Distance from currentmeter to the bottom of the w eight in mt mt Location of measuring site: mt msuptream/down stream of gauge Time 7:10 7:50 mt G. H. mt stream/down stream of gauge Mean Gauge height: Air temperature: Weather: Remarks: Stream/down stream of gauge 0 Verticals with missing angle correction Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. 11 1.000 1.000 0.001 0.002 0.004 0.005 0.094 0.993 0.994 0.990 0.990 0.990 Coeff. 11 0.000 0.001 0.002 0.004 0.005 0.097 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996<									ary	9 IVIE							-	-3/-			
Weight: Distance from currentmeter to the bottom of the w eight in m: Location of measuring site: m upstream/dow nstream of gauge Time n. upstream/dow nstream of gauge Weight: Nean Gauge height: Air temperature: Water temperature: S Verticals >10 % of Discharge O Verticals with missing angle correction Vert. S Verticals >10 % of Discharge Coeff. f1 1.000 1.000 1.000 0.001 0.002 0.004 0.032 0.991 0.995 0.9910 11 12	Wid	h in m:				14.00	Area in	m:			5.42	Mean v	elocity	in m/s:	0.78	39 Disc	harge ı	∩ m [∞] /s	:	4.274	
Weight: Distance from currentmeter to the bottom of the w eight in m: Location of measuring site: m upstream/dow nstream of gauge Time n. upstream/dow nstream of gauge Weight: Nean Gauge height: Air temperature: Water temperature: S Verticals >10 % of Discharge O Verticals with missing angle correction Vert. S Verticals >10 % of Discharge Coeff. f1 1.000 1.000 1.000 0.001 0.002 0.004 0.032 0.991 0.995 0.9910 11 12			D 1					0					1	Drine	Turne Ci	00 Det.	!				
m upstream/dow nstream of gauge Time 7:10 7:50 Weather: Weather: Mean Gauge height: Air temperature: Water temperature: S Verticals >10 % of Discharge 0 Verticals with missing angle correction Vert. S Verticals >10 % of Discharge 0 Verticals with missing angle correction Vert. S Verticals >10 % of Discharge 0 Verticals with missing angle correction Vert. S Verticals >10 % of Discharge 0 Verticals with missing angle correction Vert. S Verticals >10 % of Discharge 0 Verticals with missing angle correction Vert. S Vertical angle correction Vert. S Vertical angle correction Vert. S Vertical angle correction Vert. S Vert. S Vert. No. S Vert. Vert. S Vert. Vert. S Vert. Vert. Vert. S Vert. <th c<="" td=""><td></td><td>·</td><td>BJ</td><td></td><td></td><td></td><td>-••••</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>e on:</td><td></td><td></td><td><u> </u></td></th>	<td></td> <td>·</td> <td>BJ</td> <td></td> <td></td> <td></td> <td>-••••</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>e on:</td> <td></td> <td></td> <td><u> </u></td>		·	BJ				- ••••										e on:			<u> </u>
Time 7:10 7:50 Weather: G. Ht. Weather: Maan Gauge height: Air temperature: Water temperature: Remarks: 5 Verticals >10 % of Discharge O Verticats with missing angle correction Vert. angle 1 2 Vert. angle 1 2 Verticals >10 % of Discharge O Verticats with missing angle correction Vert. angle 1 2 2 2 0 Verticats with missing angle correction Vert. angle 1 2 2 2 2 0 Verticats with missing angle correction Vert. angle 1 2 2 2 2 0 Vert. angle 0 Vert. angle 0 Vert. angle 0 Vert. angle 0	Wei	ght:					Distanc	e fro	mcur	rentme	eter to t	the botto	om of th	ie w eig	ht in m:						
G. Ht. Mean Gauge height: Air temperature: Water temperature: Remarks: Service Service Service Service Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. f1 1.000 1.000 0.099 0.999 0.998 0.997 0.996 0.993 0.993 0.990 0.996 0.997 0.996 0.993 0.991 0.990 0.990 0.996 0.997 0.996 0.993 0.991 0.990 0.990 0.996 0.997 0.996 0.993 0.991 0.990 0.980 0.977 0.976 0.971 0.010 0.022 0.026 0.030 0.035 Coeff. f1 0.984 0.982 0.980 0.976 0.973 0.971 0.966 0.961 0.956 0.955 0.955 0.956 0.956 0.956 0.956 0.956 0.956 0.956	Loc	ation of	measu	iring site	e:								m. ups	stream/c	low nst	ream of	f gauge				
G. Ht. Mean Gauge height: Air temperature: Water temperature: Remarks: Service Service Service Service Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. f1 1.000 1.000 0.099 0.999 0.998 0.997 0.996 0.993 0.993 0.990 0.996 0.997 0.996 0.993 0.991 0.990 0.990 0.996 0.997 0.996 0.993 0.991 0.990 0.990 0.996 0.997 0.996 0.993 0.991 0.990 0.980 0.977 0.976 0.971 0.010 0.022 0.026 0.030 0.035 Coeff. f1 0.984 0.982 0.980 0.976 0.973 0.971 0.966 0.961 0.956 0.955 0.955 0.956 0.956 0.956 0.956 0.956 0.956 0.956	Time	9				7:10		7:	50			Weathe	er:								
Remarks: 5 Verticals >10 % of Discharge 0 Verticals with missing angle correction Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. f1 1.000 1.000 1.000 0.099 0.999 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.998 0.996 0.995 0.994 0.993 0.991 0.990 0.998 0.996 0.995 0.994 0.993 0.991 0.990 0.998 0.991 0.010 0.022 0.026 0.030 0.035 Coefficients f1, f2 for vertical angle correction Vert. Magn 0.985 0.984 0.982 0.980 0.976 0.973 0.971 0.969 0.966 0.963 0.961 0.958 0.955 Coeff. f2 0.040 0.045 0.051 0.057 0.063 0.070 0.077 0.084 0.992 0.100		_																			
Remarks: 5 Verticals >10 % of Discharge 0 Verticals with missing angle correction Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. f1 1.000 1.000 1.000 0.099 0.999 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.998 0.996 0.995 0.994 0.993 0.991 0.990 0.998 0.996 0.995 0.994 0.993 0.991 0.990 0.998 0.991 0.010 0.022 0.026 0.030 0.035 Coefficients f1, f2 for vertical angle correction Vert. Magn 0.985 0.984 0.982 0.980 0.976 0.973 0.971 0.969 0.966 0.963 0.961 0.958 0.955 Coeff. f2 0.040 0.045 0.051 0.057 0.063 0.070 0.077 0.084 0.992 0.100												I									
Remarks: 5 Verticals >10 % of Discharge 0 Verticals with missing angle correction Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. f1 1.000 1.000 1.000 0.099 0.999 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.998 0.996 0.995 0.994 0.993 0.991 0.990 0.998 0.996 0.995 0.994 0.993 0.991 0.990 0.998 0.991 0.010 0.022 0.026 0.030 0.035 Coefficients f1, f2 for vertical angle correction Vert. Magn 0.985 0.984 0.982 0.980 0.976 0.973 0.971 0.969 0.966 0.963 0.961 0.958 0.955 Coeff. f2 0.040 0.045 0.051 0.057 0.063 0.070 0.077 0.084 0.992 0.100	Mea	n Gauç	ge heigt	nt:				Air t	.empe	rature	:			Water	tempe	rature:					
Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. 11 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.990 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.990 0.998 0.997 0.996 0.994 0.992 0.990 0.998 0.997 0.996 0.994 0.992 0.990 0.998 0.997 0.996 0.994 0.992 0.990 0.998 0.987 0.976 0.971 0.969 0.966 0.963 0.961 0.958 0.956 0.966 0.963 0.961 0.958 0.956 0.966 0.963 0.961 0.958 0.956 0.961 0.969 0.966 0.963 0.961 0.958 0.956 0.966 0.966 0.966 0.964 0.965 0.966 0					_								1		-						
Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. 11 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.990 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.990 0.998 0.997 0.996 0.994 0.992 0.990 0.998 0.997 0.996 0.994 0.992 0.990 0.998 0.997 0.996 0.994 0.992 0.990 0.998 0.987 0.976 0.971 0.969 0.966 0.963 0.961 0.958 0.956 0.966 0.963 0.961 0.958 0.956 0.966 0.963 0.961 0.958 0.956 0.961 0.969 0.966 0.963 0.961 0.958 0.956 0.966 0.966 0.966 0.964 0.965 0.966 0	Ren	arks:												!	5 Verti	cals >1	0 % of	Disch	arge		
Vert. angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff.11 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.991 0.990 0.980 Coeff.12 0.000 0.001 0.001 0.002 0.004 0.005 0.001 0.012 0.015 0.015 0.019 0.922 0.020 0.030 0.035 Coeff.ifi 0.987 0.987 0.976 0.976 0.971 0.969 0.966 0.963 0.961 0.958 0.955 Coeff.11 0.987 0.987 0.976 0.977 0.969 0.966 0.963 0.961 0.958 0.955 Coeff.12 0.040 0.045 0.057 0.063 0.070 0.077 0.084 0.092 0.100 0.109 0.118 0.127 0.137 0.148		G																	0	orrection	
angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. f1 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.991 0.990 0.989 Coeff. f2 0.000 0.001 0.002 0.004 0.005 0.007 0.010 0.015 0.019 0.022 0.026 0.030 0.335 Vert. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Coeff. 11 0.987 0.985 0.984 0.982 0.980 0.976 0.976 0.971 0.969 0.966 0.963 0.961 0.958 0.955 Coeff. 12 0.904 0.045 0.057 0.053 0.077 0.847 0.92 0.100 0.109 0.118															J V 01.			ng un	910 0 .	JI 1 00010.	
angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Coeff. f1 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.991 0.990 0.989 Coeff. f2 0.000 0.001 0.002 0.004 0.005 0.007 0.010 0.015 0.019 0.022 0.026 0.030 0.335 Vert. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Coeff. 11 0.987 0.985 0.984 0.982 0.980 0.976 0.976 0.971 0.969 0.966 0.963 0.961 0.958 0.955 Coeff. 12 0.904 0.045 0.057 0.053 0.077 0.847 0.92 0.100 0.109 0.118	Ver	-						<u> </u>	—	<u> </u>				Τ	Τ					1	
Coeff. f1 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.991 0.990 0.989 Coeff. f2 0.000 0.001 0.001 0.002 0.004 0.005 0.007 0.010 0.012 0.015 0.019 0.022 0.026 0.030 0.035 Coeff. f1 0.987 0.985 0.984 0.982 0.980 0.978 0.976 0.973 0.971 0.969 0.963 0.961 0.958 0.958 0.958 0.984 0.982 0.980 0.977 0.976 0.973 0.971 0.969 0.963 0.961 0.958 0.958 0.958 0.958 0.958 0.956 0.961 0.963 0.961 0.958 0.958 0.955 0.961 0.963 0.961 0.958 0.958 0.955 Coeff. f1 0.947 0.946 0.957 0.063 0.070 0.084 0.922 0.100 0.100<			1	2		3	4	5		6	7	8	9	10	11	1:	2 1	3	14	15	
Coeff. f2 0.000 0.001 0.001 0.002 0.004 0.005 0.007 0.012 0.015 0.019 0.022 0.026 0.030 0.035 Vert. angle 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Coeff. f1 0.987 0.985 0.986 0.982 0.980 0.978 0.976 0.973 0.971 0.969 0.966 0.963 0.961 0.958 0.955 Coeff. f2 0.040 0.045 0.051 0.057 0.063 0.770 0.770 0.84 0.992 0.100 0.109 0.118 0.127 0.137 0.148 See Dist. to Width Height Meas. Vert. Obs. Rev Time Vel. at point Mean vel. Meref angle Meref coeff. Mege Medic Meref m Medic Meref M Medic Meref M <	•				00					-			-	-							
Coefficients f1, f2 for vertical angle correction Vert. angle 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Coeff. f1 0.987 0.985 0.984 0.982 0.980 0.976 0.973 0.971 0.969 0.966 0.963 0.961 0.958 0.955 Coeff. f2 0.040 0.045 0.051 0.057 0.063 0.070 0.077 0.084 0.922 0.100 0.109 0.118 0.127 0.137 0.148 Ser Dist. to Width Height Meas. Vert. Obs. Rev Time Vel. at Mean hor. Vert. Meas. Vert. Height Adj. A rea Discharge ninitial point m m m sec m/s m/s m m m m m m m m m m m <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-																				
Vert. angle 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Coeff. f1 0.987 0.985 0.984 0.982 0.980 0.976 0.973 0.971 0.969 0.966 0.963 0.961 0.958 0.955 Coeff. f2 0.040 0.045 0.051 0.057 0.063 0.070 0.077 0.084 0.992 0.100 0.109 0.118 0.127 0.137 0.148 Ser Dist. to Width Height Meas. Vert. Obs. Rev Time Vel. at Mean Hor. Vert. Meas. Vert. Height Adj. Area Discharge minitial m m m deg m sec m/s m/s m m m m m m m m m m m m m m m					<u> </u>		Coe	efficie	ents f	1, f2 f	or vertir	cal angle	e corre	ction		·		·		-	
Coeff. f1 0.987 0.985 0.984 0.982 0.980 0.978 0.976 0.973 0.971 0.969 0.966 0.963 0.961 0.958 0.958 0.955 Coeff. f2 0.040 0.045 0.051 0.057 0.063 0.070 0.077 0.084 0.992 0.100 0.109 0.118 0.127 0.137 0.148 Ser Dist. to Width Height Meas. Vert. Obs. Rev Time Vel. at Mean Hor. Vert. Meas. Vert. Height Adj. A rea Distharge ninitial point m m m m m m m m m m m m m m m m m m sec m/s m/s m m m m m m m m m m m m m m m m m	Ver	i.							T	<u> </u>	-				Τ					Τ	
Coeff. f1 0.987 0.985 0.984 0.982 0.980 0.978 0.976 0.973 0.971 0.969 0.966 0.963 0.961 0.958 0.958 0.955 Coeff. f2 0.040 0.045 0.051 0.057 0.063 0.070 0.077 0.084 0.992 0.100 0.109 0.118 0.127 0.137 0.148 Ser Dist. to Width Height Meas. Vert. Obs. Rev Time Vel. at Mean Hor. Vert. Meas. Vert. Height Adj. A rea Distharge ninitial point m m m m m m m m m m m m m m m m m m sec m/s m/s m m m m m m m m m m m m m m m m m	ang	е	16	17	·	18	19	20	נ	21	22	23	24	25	26	27	7 2	.8	29	30	
Coeff. f2 0.040 0.045 0.051 0.057 0.063 0.077 0.084 0.092 0.100 0.109 0.118 0.127 0.137 0.148 Ser Dist. to initial point Width unitial point Height unitial point Meas. unitial point Vert. unitial point Height unitial point Meas. unitial unitial point Vert. unitial unitial point Height unitial unitial point Height unitial unitial point Height unitial unitial point Meas. unitial unitial point Vert. unitial unitial point Height unitial unitial unitial point Meas. unitial unitial point Vert. unitial unitial point Height unitial unitial unitial unitial unitial unitial point Meas. unitial unitial point Vert. unitial			0.987	0.98	35 (0.984	0.982	_			0.976	0.973	-		_	_	63 0.9)61 C		0.955	
No. initial point w depth point angle w angle coeff. f1 angle f1 angle coeff. f1 angle f1 angle coeff. f1 angle f1 angle f1 <tha< td=""><td>Coe</td><td>ff. f2</td><td>0.040</td><td>0.04</td><td>45 (</td><td>0.051</td><td>0.057</td><td>0.06</td><td>33 0</td><td></td><td></td><td>0.084</td><td>0.092</td><td>0.100</td><td>0.10</td><td></td><td></td><td>27 C</td><td>.137</td><td>0.148</td></tha<>	Coe	ff. f2	0.040	0.04	45 (0.051	0.057	0.06	33 0			0.084	0.092	0.100	0.10			27 C	.137	0.148	
No. initial point w depth point angle w angle coeff. f1 angle f1 angle coeff. f1 angle f1 angle coeff. f1 angle f1 angle f1 <tha< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></tha<>															•						
No. initial point w depth point angle w angle coeff. f1 angle f1 angle coeff. f1 angle f1 angle coeff. f1 angle f1 angle f1 <tha< td=""><td>Cor</td><td>Diet to</td><td>\\/idth</td><td></td><td>Maas</td><td>Vort</td><td>Ohe</td><td>DOV</td><td>Time</td><td></td><td>+ Mear</td><td>Hor</td><td>Vort</td><td>Mage</td><td>Vort</td><td>Hoight</td><td>۸di</td><td>Are</td><td></td><td>ischarge</td></tha<>	Cor	Diet to	\\/idth		Maas	Vort	Ohe	DOV	Time		+ Mear	Hor	Vort	Mage	Vort	Hoight	۸di	Are		ischarge	
point n <td></td> <td></td> <td></td> <td>Height</td> <td></td> <td></td> <td></td> <td></td> <td>11116</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>AIG</td> <td></td> <td>Scharge</td>				Height					11116							-		AIG		Scharge	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO.				uepui	angio	Depui	'		point		v	Ŭ	· ·	Ŭ,	14	ucpui				
mmmmddegmlesem/sm/slesemmmmmm2m3/s1234567891011121314151617181910.01.001.000.000.00.600lese1.0001.0000.000.000.000.000.000.000.0022.02.001.000.410.00.635410.5810.5811.0001.0000.000.000.000.410.820.47734.02.001.000.510.00.650400.8480.8481.0001.0000.000.000.000.410.820.47734.02.001.000.510.00.650400.8480.8481.0001.0000.000.000.000.511.020.86546.02.001.000.530.00.655410.9100.901.0001.0000.000.000.000.490.980.89258.02.001.000.420.000.45430.7100.7011.0001.0000.000.000.040.440.596610.02.001.000.350.001.0001.0001.0000.000.000.0		Pe						'				000				(15*4)	(14-16)	(17*3	3)	(11*18*12)	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 0.0 1.00 1.00 0.00 0.0 0.6 0 0 1.000 1.000 0.000 0.000 0.00		m	m	m	m	deg	m	'	sec	m/s	m/s		-	m		m	m	m2	2	m3/s	
2 2.0 2.00 1.00 0.41 0.0 0.6 35 41 0.581 1.000 1.000 0.00 0.41 0.82 0.477 3 4.0 2.00 1.00 0.51 0.0 0.6 50 40 0.848 1.000 1.000 0.000 0.00 0.41 0.82 0.477 4 6.0 2.00 1.00 0.53 0.0 0.6 60 42 0.969 1.000 1.000 1.000 0.00 0.00 0.51 1.02 0.865 5 8.0 2.00 1.00 0.49 0.0 0.6 55 41 0.910 0.900 1.000 0.000 0.00 0.41 0.82 0.477 5 8.0 2.00 1.00 0.66 55 41 0.910 0.90 1.000 1.000 0.400 0.00 0.40 0.49 0.98 0.892 6 10.0 2.00 1.00 0.6 45 43 0.710 1.000 1.000 0.400 0.00 0.42 <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td></td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12</td> <td>13</td> <td>14</td> <td>15</td> <td>16</td> <td>17</td> <td>18</td> <td>5</td> <td>19</td>	1	2	3	4	5		7	8	9	10	11	12	13	14	15	16	17	18	5	19	
3 4.0 2.00 1.00 0.51 0.0 0.6 50 40 0.848 0.848 1.000 1.00 0.00 0.00 0.51 1.02 0.865 4 6.0 2.00 1.00 0.53 0.0 0.6 60 42 0.969 1.000 1.00 0.50 0.00 0.00 0.53 1.02 0.865 5 8.0 2.00 1.00 0.49 0.00 0.6 55 41 0.910 0.910 1.000 0.400 0.400 0.49 0.00 0.49 0.885 6 1.00 1.00 0.910 0.910 1.000 1.000 0.400 0.400 0.40 0.49 0.93 0.892 6 1.00 1.00 0.410 0.42 0.00 0.6 45 43 0.710 1.000 1.000 0.400 0.400 0.42 0.40 0.44 0.596 7 12.0 2.00 1.00 <td>1</td> <td>0.0</td> <td>1.00</td> <td>1.00</td> <td>0.00</td> <td>0.0</td> <td>0.6</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>1.000</td> <td>1.000</td> <td>0.000</td> <td>0.000</td> <td>0.00</td> <td>0.00</td> <td>0.0</td> <td>0</td> <td></td>	1	0.0	1.00	1.00	0.00	0.0	0.6	0	0			1.000	1.000	0.000	0.000	0.00	0.00	0.0	0		
4 6.0 2.00 1.00 0.53 0.0 0.6 60 42 0.969 1.000 1.000 0.530 0.000 0.00 0.53 1.06 1.028 5 8.0 2.00 1.00 0.49 0.0 0.6 55 41 0.910 1.000 1.000 0.490 0.00 0.49 0.98 0.892 6 10.0 2.00 1.00 0.42 0.0 0.6 45 43 0.710 1.000 1.000 0.400 0.00 0.49 0.49 0.98 0.892 7 12.0 2.00 1.00 0.6 45 43 0.710 0.700 1.000 0.400 0.400 0.40 0.42 0.84 0.596 7 12.0 2.00 1.00 0.6 35 40 0.595 1.000 1.000 0.400 0.400 0.35 0.70 0.417 8 14.0 1.00 1.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td< td=""><td>2</td><td>2.0</td><td>2.00</td><td>1.00</td><td>0.41</td><td>0.0</td><td>0.6</td><td>35</td><td>41</td><td>0.581</td><td>1 0.581</td><td>1.000</td><td>1.000</td><td>0.410</td><td>0.000</td><td>0.00</td><td>0.41</td><td>0.8</td><td>2</td><td>0.477</td></td<>	2	2.0	2.00	1.00	0.41	0.0	0.6	35	41	0.581	1 0.581	1.000	1.000	0.410	0.000	0.00	0.41	0.8	2	0.477	
5 8.0 2.00 1.00 0.49 0.0 0.6 55 41 0.910 0.910 1.000 1.000 0.400 0.000 0.49 0.98 0.892 6 10.0 2.00 1.00 0.42 0.0 0.6 45 43 0.710 1.000 1.000 0.400 0.00 0.42 0.84 0.596 7 12.0 2.00 1.00 0.6 35 40 0.595 1.000 1.000 0.350 0.000 0.00 0.42 0.84 0.596 8 14.0 1.00 1.00 0.350 0.00 0.00 0.00 0.35 0.70 0.417 8 14.0 1.00 1.00 1.000 1.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00				\$	\$	ł		÷ .	ł			2	-	-	ş		1				
6 10.0 2.00 1.00 0.42 0.0 0.6 43 0.710 0.710 1.000 1.000 0.400 0.00 0.42 0.84 0.596 7 12.0 2.00 1.00 0.35 0.0 0.6 35 40 0.595 1.000 1.000 0.350 0.000 0.00 0.35 0.70 0.417 8 14.0 1.00 1.00 0.00 1.000 0.000 0.000 0.00 0			1	2	ž	- <u></u>	+	, ,	ţ	· · · · · ·			<u>,</u>	ě l	; ;	£	-				
7 12.0 2.00 1.00 0.35 0.0 0.6 35 40 0.595 1.000 1.000 0.350 0.000 0.00 0.35 0.70 0.417 8 14.0 1.00 1.00 0.				<u> </u>	[*]			(÷	÷		-	÷	1	(
8 14.0 1.00 1.00 0.00 0.0 0.6 0 0 1.00 1.00				5	*	- <u>\$</u>		8	÷			2	{	1	<u> </u>						
				1	\$		1	č –	<u>}</u>	0.590	0.590	-						-		0.417	
	0	14.0	1.00	1.00	0.00	0.0	0.0	<u> </u>	<u> </u>		0.780		1.000	0.000	0.000	0.00	0.00			4.274	

DHM

Ctat	ion No.:	<u> </u>													Mor		~ .		4	
	er No.:		Phoksu	indo l	ake											as. No npute			4	
_	ation:		Saagar								Date:									
Date			5/29/2		Indico						Checked:									
Duit	•		0/20/2	2010		Die	sch	ara	≏ Me	asur	eme	nt Na	ntes		Dat					
\\/idt	th in m:				16.00	Area in		ary			Mean v			0.9		-	je in r	m ³ /s·	_	6.543
VVIG					10.00	Album				1.02		COULT	III IIrə.	0.0	52 0101	Jilaig	JC 11 1	1173.		0.040
Part	v	BJ	Counter No.: Meter No.:									Price	Type 6	22 Rat	ed on	1:				
Weig			Distance from currentmeter to the bott													0				
	J					Diotante	0	//// 0 0.					10 11 0.3	µ						
Loca	ation of	measu	uring site	Э:								m. ups	stream/	dow nst	ream o	f gau	ige			
Time					9:30		10	:00			Weathe	or.								
G. H	_				0.00		10.	.00			Viouin									
-																				
Mea	n Gauç	ge heigh	nt:				Air t	tempe	erature:				Wate	r tempe	rature:					
										-						-				
Rem	arks:													6 Verti	cals >1	0 %	of Dis	scharge	Э	
														0 Verti	cals w	ith mi	issing	angle	corr	ection
Vert	ί.																		Τ	
angl		1	2		3	4	5		6	7	8	9	10	11		2	13	14		15
	ff. f1	1.000	1.00		1.000	0.999	0.9			0.998	0.997	0.996					0.991			0.989
COE	ff. f2	0.000	0.00	<u>n</u>	0.001	0.002	0.0			0.007	0.010	0.012		5 0.01	9 0.0	22	0.026	6 0.03	010	0.035
Vert	-	,		—	—,	006	ettici T	ents i	1, ĭ∠ i u	orveru	cal angle		Ction					—	\top	
angl		16	17	,	18	19	20	о	21	22	23	24	25	26	2	7	28	29		30
_	ff. f1	0.987	0.98		0.984	0.982	0.9			0.976	0.973	0.971	_				0.961		_	0.955
Coe	ff. f2	0.040	0.04	1 5	0.051	0.057	0.0	63 C	0.070	0.077	0.084	0.092	0.10	0 0.10	9 0.1	18	0.127	0.13	7 (0.148
Ser	Dist. to	Width	Height	Meas	. Vert.	Obs.	Rev	Time	Vel. at	t Mean	Hor.	Vert.	Meas.	Vert.	Height	Ad	li	Area	Disc	harge
No.	initial		1.0.9.1	depth					point	vel.	angle	angle	depth	angle	*f2	dep			E.c.	10.91
	point			·	-						coeff.	coeff.	*f1	coeff.						
									, I.	,		f1	(13*5)	f2	(15*4)	(14-1	ŕ	(17*3)	`	18*12)
1	m 2	m 3	m 4	m 5	deg 6	m 7	8	sec 9	m/s 10	m/s 11	12	13	m 14	15	m 16	m 17		m2 18		ເ3/s 19
1	2	1.00	4	5 0.00		0.6	8	9		1	12	1.000	14 0.000	15 0.000	0.00	0.0		0.00		19
2	2.0	2.00	1.00	0.00		0.6	50	41	0.827	0.827	1.000	1.000	0.000	0.000	0.00	0.0		0.88	0.	728
3	4.0	2.00	1.00	0.51	0.0	0.6	60	42	0.969	1	1	1.000	0.510	0.000	0.00	0.5		1.02	-	989
4	6.0	2.00	1.00	0.57	0.0	0.6	70	44	1.080	1.080	1.000	1.000	0.570	0.000	0.00	0.5	57	1.14	1.:	231
5	8.0	2.00	1.00	0.59		0.6	85	44	1.311	->	<u>.</u>	1.000	0.590	0.000	0.00	0.5		1.18		547
6	10.0	2.00	1.00	0.54		0.6	45 50	42 41	0.727		1.000	1.000	0.540	0.000	0.00	0.5		1.08		785 745

0.632 0.632 1.000 1.000 0.410 0.000

0.932

1.000 1.000 0.000 0.000

0.00

0.00

0.41

0.00

0.82

0.00

7.02

0.518

6.543

8 14.0

9 16.0

2.00

1.00

1.00

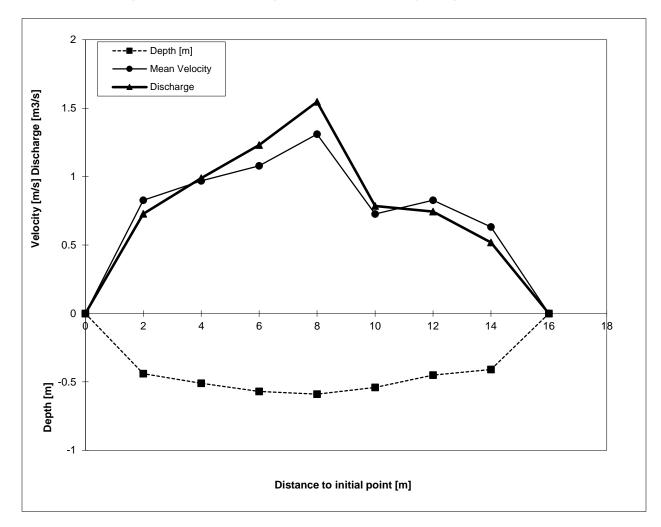
1.00

0.41

0.00

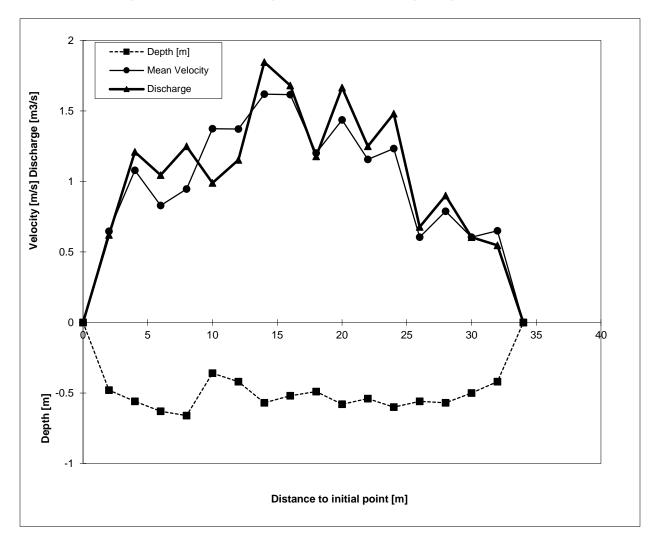
0.0

0.0

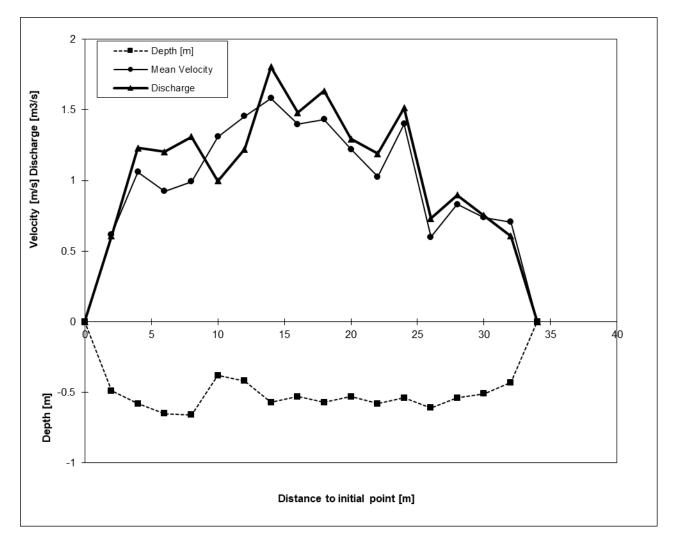

0.6

0.6

40 43


0

0


Station No	.:											Meas. N	No.:	1		
River No.:		Phoksu	ndo Lak	е								Comput	ed:			
Location:		Outlet										Date:				
Date:		019/05/28										Checke	d:			
											Date:					
Width in m	:		34.00	Area in		•		Mean v			1.069	Discha	rge in m ⁱ	³/s:	18.094	
Party:	BJ				Counte	rNo.:		Meter N	lo.:	Price Ty	/pe 622	Rated c	on:			
Weight:				Distanc	e from o	currentm	neter to t	he botto	om of the	e w eight	in m:					
	£															
Location o	measu	ining site							m. upsi	ream/do	wnstrea	amor ga	luge			
Time			11:20		12:05			Weathe	er:							
G. Ht.			1.07													
Mean Gau	ge heigł	nt:	1.07		Air tem	perature):			Water t	emperat	ure:				
Remarks:										1	Vertica	ls >10 %	6 of Disc	harge		
										0	Vertica	ls with r	missing a	angle co	rrection	
Vert.																
angle	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Coeff. f1	1.000	1.000	1.000	0.999	0.999	0.998	0.998	0.997	0.996	0.995	0.994	0.993	0.991	0.990	0.989	
Coeff. f2	0.000	0.001	0.001	0.002	0.004	0.005	0.007	0.010	0.012	0.015	0.019	0.022	0.026	0.030	0.035	
				Coe	efficients	s f1, f2 f	or verti	cal angle	correc	tion		_				
Vert.																
angle	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Coeff. f1	0.987	0.985	0.984	0.982	0.980	0.978	0.976	0.973	0.971	0.969	0.966	0.963	0.961	0.958	0.955	
Coeff.f2	0.040	0.045	0.051	0.057	0.063	0.070	0.077	0.084	0.092	0.100	0.109	0.118	0.127	0.137	0.148	

Height	Meas.	Vert.	Obs.	Rev	Time	Vel. at	Mean	Hor.	Vert.	Meas.	Vert.	Height	Adj.	Area	Discharge
	depth	angle	Depth			point	vel.	angle	angle	depth	angle	*f2	depth		
								coeff.	coeff.	*f1	coeff.				
									f1	(13*5)	f2	(15*4)	(14-16)	(17*3)	(11*18*12)
m	m	deg	m		sec	m/s	m/s			m		m	m	m2	m3/s
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1.00	0.00	0.0	0.6	0	0			1.000	1.000	0.000	0.000	0.00	0.00	0.00	
1.00	0.48	0.0	0.6	40	42	0.647	0.647	1.000	1.000	0.480	0.000	0.00	0.48	0.96	0.621
1.00	0.56	0.0	0.6	70	44	1.080	1.080	1.000	1.000	0.560	0.000	0.00	0.56	1.12	1.209
1.00	0.63	0.0	0.6	55	45	0.829	0.829	1.000	1.000	0.630	0.000	0.00	0.63	1.26	1.045
1.00	0.66	0.0	0.6	<u>60</u>	43	0.947	0.947	1.000	1.000	0.660	0.000	0.00	0.66	1.32	1.250
1.00	0.36	0.0	0.6	85	42	1.374	1.374	1.000	1.000	0.360	0.000	0.00	0.36	0.72	0.989
1.00	0.42	0.0	0.6	95	47	1.372	1.372	1.000	1.000	0.420	0.000	0.00	0.42	0.84	1.153
1.00	0.57	0.0	0.6	105	44	1.619	1.619	1.000	1.000	0.570	0.000	0.00	0.57	1.14	1.846
1.00	0.52	0.0	0.6	100	42	1.616	1.616	1.000	1.000	0.520	0.000	0.00	0.52	1.04	1.680
1.00	0.49	0.0	0.6	85	48	1.202	1.202	1.000	1.000	0.490	0.000	0.00	0.49	0.98	1.178
1.00	0.58	0.0	0.6	110	52	1.436	1.436	1.000	1.000	0.580	0.000	0.00	0.58	1.16	1.666
1.00	0.54	0.0	0.6	75	44	1.157	1.157	1.000	1.000	0.540	0.000	0.00	0.54	1.08	1.249
1.00	0.60	0.0	0.6	80	44	1.234	1.234	1.000	1.000	0.600	0.000	0.00	0.60	1.20	1.481
1.00	0.56	0.0	0.6	40	45	0.605	0.605	1.000	1.000	0.560	0.000	0.00	0.56	1.12	0.677
1.00	0.57	0.0	0.6	50	43	0.789	0.789	1.000	1.000	0.570	0.000	0.00	0.57	1.14	0.899
1.00	0.50	0.0	0.6	40	45	0.605	0.605	1.000	1.000	0.500	0.000	0.00	0.50	1.00	0.605
1.00	0.42	0.0	0.6	45	47	0.650	0.650	1.000	1.000	0.420	0.000	0.00	0.42	0.84	0.546
1.00	0.00	0.0	0.6	0	0			1.000	1.000	0.000	0.000	0.00	0.00	0.00	
							1.069							16.92	18.094

Station																Meas.			.
Station River No			Dha	ksundc														4	2
-					саке											Compu	ieu.		
Location	n:		Out													Date:			
Date:			5/3	0/2019												Checke	ed:		
								char	ge N	leas	sur	reme	nt No	otes		Date:			
Width in	m:				34.00) Are	ea in	m²:		17	7.18	Mean v	elocity	in m/s:	1.075	Discha	rge in	m³/s:	18.477
Party:	в	J						Counte	rNo.:			Meter I	No.:	Price T	ype 622	Rated of	on:		
Weight:						Dis	tance	e from o	current	meter	r to t	he bott	om of th	e w eigh	t in m:				
														5					
Locatio	n of r	neasu	uring	site:									m. ups	tream/do	ow nstre	am of ga	auge		
			-													•	•		
Time					12:00)		1:15				Weath	er:						
G. Ht.					1.09)													
							•												
Mean G	auge	heigh	nt:		1.09	9		Air tem	peratur	e:				Water	tempera	ture:			
	U	0													•				
Remark	s.													0	Vertica	ls >10 %	6 of D	ischarge	
1 tornarit	0.																	g angle c	orroction
														0	ventica		115511	y al iyle c	Unection
Vert.						1	-								<u> </u>	<u> </u>	1		
angle		1		2	3		4	5	6	-	7	8	9	10	11	12	13	14	15
Coeff. f	1 1	.000	1	.000	1.000		- 999	0.999	0.998	_	, 998	0.997	0.996	-	0.994	0.993	0.99		-
Coeff. f		.000		.000	0.001	_	002	0.004	0.005	_		0.010	0.012		0.019	0.022	0.02		-
00011.1	2 0	.000	Ŭ	.001	0.001	0.0		fficients						-	0.010	0.022	0.02	0 0.000	0.000
Vert.						T	000		511,12		/ El lic	Jai aliyi			1	1	1		
angle		16		17	18	1	9	20	21	2	2	23	24	25	26	27	28	29	30
Coeff. f	1 0	.987		.985	0.984	_	982	0.980	0.978		976	0.973	0.971	0.969	0.966	0.963	0.96	-	
Coeff. f		.040		.045	0.051	_)57	0.063	0.070	_		0.084	0.092		0.109	0.118	0.12		_
	_ 0		Ŭ		5.001	1 0.1			5.0.0	1 0.0		5.001	1 0.002	000	500	50	- .		00
																	-		_
Height	Mea	s. Ve	ert.	Obs.	Rev	Time	Vel.	at Me	an H	or.	Ver	rt. Mea	as. Ve	ert. Heig	ht Ac	lj. A	rea I	Discharg	е

Height		Vert.	Obs.	Rev	Time	Vel. at	Mean	Hor.	Vert.	Meas.	Vert.	Height		Area	Discharge
	depth	angle	Depth			point	vel.	angle	angle	depth	angle	*f2	depth		
								coeff.	coeff.	*f1	coeff.				
									f1	(13*5)	f2	(15*4)	(14-16)	(17*3)	(11*18*12)
m	m	deg	m		sec	m/s	m/s			m		m	m	m2	m3/s
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1.00	0.00	0.0	0.6	0	0			1.000	1.000	0.000	0.000	0.00	0.00	0.00	
1.00	0.49	0.0	0.6	40	44	0.618	0.618	1.000	1.000	0.490	0.000	0.00	0.49	0.98	0.606
1.00	0.58	0.0	0.6	75	48	1.060	1.060	1.000	1.000	0.580	0.000	0.00	0.58	1.16	1.230
1.00	0.65	0.0	0.6	<mark>60</mark>	44	0.925	0.925	1.000	1.000	0.650	0.000	0.00	0.65	1.30	1.203
1.00	0.66	0.0	0.6	<u>60</u>	41	0.993	0.993	1.000	1.000	0.660	0.000	0.00	0.66	1.32	1.311
1.00	0.38	0.0	0.6	<mark>85</mark>	44	1.311	1.311	1.000	1.000	0.380	0.000	0.00	0.38	0.76	0.996
1.00	0.42	0.0	0.6	<mark>90</mark>	42	1.455	1.455	1.000	1.000	0.420	0.000	0.00	0.42	0.84	1.222
1.00	0.57	0.0	0.6	105	45	1.583	1.583	1.000	1.000	0.570	0.000	0.00	0.57	1.14	1.805
1.00	0.53	0.0	0.6	105	<mark>5</mark> 1	1.398	1.398	1.000	1.000	0.530	0.000	0.00	0.53	1.06	1.482
1.00	0.57	0.0	0.6	95	45	1.433	1.433	1.000	1.000	0.570	0.000	0.00	0.57	1.14	1.634
1.00	0.53	0.0	0.6	<mark>90</mark>	50	1.221	1.221	1.000	1.000	0.530	0.000	0.00	0.53	1.06	1.295
1.00	0.58	0.0	0.6	<mark>65</mark>	43	1.026	1.026	1.000	1.000	0.580	0.000	0.00	0.58	1.16	1.190
1.00	0.54	0.0	0.6	95	46	1.402	1.402	1.000	1.000	0.540	0.000	0.00	0.54	1.08	1.514
1.00	0.61	0.0	0.6	45	<mark>5</mark> 1	0.600	0.600	1.000	1.000	0.610	0.000	0.00	0.61	1.22	0.732
1.00	0.54	0.0	0.6	<u>60</u>	49	0.831	0.831	1.000	1.000	0.540	0.000	0.00	0.54	1.08	0.897
1.00	0.51	0.0	0.6	50	46	0.738	0.738	1.000	1.000	0.510	0.000	0.00	0.51	1.02	0.752
1.00	0.43	0.0	0.6	50	48	0.707	0.707	1.000	1.000	0.430	0.000	0.00	0.43	0.86	0.608
1.00	0.00	0.0	0.6	0	0			1.000	1.000	0.000	0.000	0.00	0.00	0.00	
							1.075							17.18	18.477

Annex II

Water Quality and Sediment Analysis

	ter Mana			
1. S. S.		gement,	Treatm	nent & Consultancy
t Rep	TRAINING		cat	<u>e_</u>
ch Centre	A DITTON	PULTO	Analy No. of	e: Outlet of Lake zed date : 09/06/2019 - 17/06/2019 Samples: 01 ion : Phoksundo Lake
Units	WHO GV	NDWQS	Result	Methods used
	PHYSI	and the second second second	Instantion to the	
NTU 🔨 🤇	5	5 (10)	2.0	2130 B, APHA, 23rd EDITION
mg/l	and the second s	11	<1.0	2540 D. APHA, 23rd EDITION
	CHEM	ICAL	- Aller	
mg/l as CaCO ₃	500	500	132.0	2340 C, APHA, 23rd EDITION
mg/l	50	50 (Max)	0.9	4500-NO3- B., APHA, 23rd EDITION
mg/l	122	250 (Max)	41.9	4500-SO4. APHA, 23rd EDITION
mg/l	0.3	0.3 (3)	0.04	3111 B, APHA, 23rd EDITION
mg/l	-	-	5.7	4500-O A, APHA, 23rd EDITION
mg/l			3.3	5210 B., APHA, 23 rd EDITION
mg/l		Ray	8.0	5220 B., APHA, 23 rd EDITION
	ch Centre	Solution Solution Ch Centre Solution Units WHO GV PHYSI NTU 5 mg/l - CHEM Solution mg/l - mg/l 0.3 mg/l - mg/l -	ch Centre Units WHO GV NDWQS PHYSICAL NTU 5 5 (10) mg/l	WHO GV NDWQS Result Units WHO GV NDWQS Result PHYSICAL NTU 5 5 (10) 2.0 mg/l - - <1.0

Authonized Signature Checked by Note: 1. The result refer only to the parameters tested of the samples provided to our laboratory or collected by us for analysis as specified. Endorsement of the product is neither inferred nor implied. 2. Any duplication of this report can not be used as evidence in the court of law and should not be used in any advertising media without prior written permission to us. 3. The total liability of our company for the product is limited to the invoiced amount only. 132, Ratopul, P O Box # 8975 EPC 5205, Kathmandu, Nepal. E-mail : info@wetcpl.com.np, wetcpl@gmail.com

DHM

Annex III Field Photographs

Performing ritual Pooja by Lama Guru with local people before starting Bathymetric Survey of Phoksundo Lake

Inauguration of Boat in Lake with Lama

Discharge measurement

Discharge measurement

Establishing Benchmark in permanent boulder near the Lake

Conducting survey of the lake using rover

Conducting survey of the lake

Bathymetric survey with Chairman of Shey Phoksundo Ward No. 8

Obstruction on bathymetric survey due to strong wind and sitting nearby fire

Communicating through Walkie Talkie in the village

Conducting Bathymetric Survey with DHM Expert

Depth of the lake shown by echo-sounder

FINAL REPORT: Preparation of Bathymetric Map of Phoksundo Lake of Dolpa to Update its Inventory-2075/76

Highest Depth of the Phoksundo Lake Observed by Echo Sounder during the Bathymetric Survey

Annex IV Instrument Specification: Echo Sounder

Model	CVS-126	CVS-128						
Output power (RMS)	600 W 600W or 1kW							
Output frequency	50 kHz and 200 kHz							
Output method	Single or Alternate							
Display size and type	5.7 inch color TFT LCD	8.4 inch color TFT LCD						
Display resolution	320 x 240 pixels (QVGA)	640 x 480 pixels (VGA)						
Basic range	2.5 to 800 (m), 10 to 2800 (ft), 2.5 to 600 (fm / I. fm) (8 ranges can be set to users choice)	2.5 to 700 (fm / I. fm)						
Zoom range	2.5 to 200 (m), 10 to 650 (ft), 2.5 to 150 (fm / I. fm)							
Range unit	m, ft, fm, I. fm							
Shift step	1m, 10m, 1/8, 1/4							
Presentation modes	High frequency, Low frequency, Dual frequency, Zoom image (Bottom lock, Bottom discrimination, Bottom zoom, Zoom, Bottom follow zoom), Nav mode, Vertical split, Horizontal split, A-scope can be displayed at all above modes							
Presentation colors	64 colors, 16 colors, 8 colors, M	onochrome						
Back ground color	ack ground color Marine blue, Blue, Black, White, Nighttime color, Other 5							
Alarms	Bottom, Fish, Temperature *, Sp	beed**, Arrival***, XTE ***						
Image speed	9 steps & stop	top						
Functions	I, Noise rejection, White line, oat speed correct, Store image (10 images) nory, Simple plotter, Panel illumination, on area display etc.							
Auto functions	Range, Shift, Gain	(0.55%						
Language	Traditional Chinese, English, Frenc Spanish, Thai, Danish, (Simplified (h, Greek, Italian, Japanese, Korean Chinese CVS-128 only)						
Input data format and	NMEA0183 Ver.1.5 / 2.0 / 3.0							
sentences	GGA, GLL, HDT, MTW, MWV, RMC, VHW, VTG, ZDA							
Output data format and								
sentences	DBT, DPT, GGA, GLL, HDT, MTW, MWV, RMC, TLL, VHW, VTG, ZDA							
NMEA port(s)	Total 1 : input and output							
Power supply	10.8 to 31.2 V DC							

Garmin Oregon 700 Handheld GPS

Garmin's Oregon 700 Handheld GPS provides accurate position with its built-in GPS and GLONASS receivers. A rugged and waterproof 3" touchscreen display. The Oregon 700 offers a Worldwide Basemap, Electronic Compass, Barometric Altimeter, Active Weather, Wireless Sharing and more making this handheld a top choice among outdoorsman.

Garmin Oregon 700 Handheld GPS Details

Each Garmin Oregon 700 Handheld GPS comes with: Garmin Oregon 700 Handheld GPS, USB Cable, Carabiner Clip, Documentation and a One-Year Warranty.

Size: 2.4"W x 4.5"H x 1.3"D

Garmin Oregon 700 Handheld GPS Special Features

- 3" Touchscreen Display
- Electronic Compass and Barometric Altimeter
- GPS and GLONASS Receivers
- 1 Year Birds-Eye Included
- Rugged and Waterproof to IPX7

Surveying Performance	T66						
Channel	220 Channels						
	BDS B1, B2, B3						
	GPS L1C/A, L1C, L2C, L2E, L5						
	GLONASS L1C/A, L1P, L2C/A, L2P, L3						
Signal Tracking	SBAS L1C/A, L5 (only for the satellites supporting L5)						
	Galileo GIOVE-A, GIOVE-B, E1, E5A, E5B						
	QZSS, WAAS, MSAS, EGNOS, GAGAN, SBAS						
	Positioning output rate: 1Hz~50Hz						
GNSS Features	Initialization time: < 10s						
	Initialization reliability: >99.99%						
Positioning Precision							
Code Differential GNSS	Horizontal: $\pm 0.25 \text{ m} + 1 \text{ ppm}$						
	Vertical: $\pm 0.50 \text{ m} + 1 \text{ ppm}$						
Positioning	SBAS positioning accuracy: typically<5m 3DRMS						
Static GNSS Surveying	Horizontal: $\pm 2.5 \text{ mm} + 0.5 \text{ ppm}$						

DGPS

Nepal Hydrological and Meteorological Research Center and Consultancy P. Ltd.

	Vertical: $\pm 5 \text{ mm} + 0.5 \text{ ppm}$		
Real-Time Kinematic	Horizontal: $\pm 8 \text{ mm} + 1 \text{ ppm}$		
Surveying			
(Baseline<30km)	Vertical: $\pm 15 \text{ mm} + 1 \text{ ppm}$		
	Horizontal: $\pm 8 \text{ mm} + 0.5 \text{ ppm}$		
Network RTK	Vertical: $\pm 15 \text{ mm} + 0.5 \text{ ppm}$		
	RTK initialization time: 2~8s		
Physical			
Dimension	12.9 cm X 11.2cm		
Weight	970g (including installed battery)		
Material	Magnesium aluminum alloy shell		
Environmental			
Operating	-45°C ~ +60°C		
Storage	-55°C ~ +85°C		
Humidity	Non-condensing		
	IP67 standard, protected from long time immersion to depth of		
Waterproof/Dustproof	1m		
	IP67 standard, fully protected against blowing dust		
	OFF Status: Withstand 2 meters pole drop onto the cement		
Shock and Vibration	ground naturally. ON Status: Withstand 40G 10 milliseconds sawtooth wave		
	impact test.		
Electrical			
Power Consumption	2W		
Battery	Rechargeable, removable Lithium-ion battery		
	Single battery: 7h (static mode)		
Battery Life	5h (internal UHF base mode)		
	6h (rover mode)		
Communications and Data	Storage		
	5PIN LEMO external power port + RS232		
I/O Port	7PIN LEMO RS232 + USB		
	1 network/radio data link antenna port		
	SIM card slot		
Wireless Modem	Integrated internal radio receiver and transmitter 0.5W/1W		
	External radio transmitter 5W/25W		
Working frequency	410-470MHz		
Communication protocol	TrimTalk450s, TrimMark3, PCC EOT, SOUTH		
•			

Cellular Mobile Network	WCDMA 3.5G module, GPRS/EDGE compatible,
	CDMA2000/EVDO 3G optional
Double Module Bluetooth	BLEBluetooth 4.0 standard, supports connection with Android and iOS.
	Bluetooth 2.1 + EDR standard
NFC Communication	Realizing close range (<10cm) automatic pair between R6 and controller
	(controller equipped with NFC wireless communication module is required.)
Data Storage/Transmission	4GB internal storage, more than 3 years' raw observation data (about 1.4M/day),
	based on recording from 14 satellites plug and play mode of USB data transmission.
Data Format	Differential: CMR+, CMRx, RTCM 2.1, RTCM 2.3, RTCM 3.0, RTCM 3.1, RTCM 3.2
	GPS output: NMEA 0183, PJK plane coordinates, binary code
	Network model support: VRS, FKP, MAC, supporting NTRIP protocol
Inertial Sensing System	
Tilt Survey	Built-in tilt compensator, correcting coordinates automatically according to the tilt direction and angle of the centering rod
Electronic Bubble	Controller software display electronic bubble, checking leveling status of the centering rod real time
User Interaction	
Buttons	One-button operation, visual operation

Annex V Field itinerary

Date	Travel	Mode of	Elevation
		travel	
Day 1 – Jestha 8	Kathmandu – Nepalgunj	Air plane	
Day 2 – Jestha 9	Nepalgunj – Juphal	Air plane	
Day 2 – Jestha 9	Juphal - Suligad	Travel by jeep	
Day 3 – Jestha 10	Suligad to Sankta	Trek	
Day 4 – Jestha 11	Sankta to Jharna	Trek	
Day 5 – Jestha 12	Jharna to Rigmo	Trek	3,608 m, Rigmo
			village
Day 5 – Jestha 12	Rigmo - Phoksundo Lake	5 min walk	3588 m, Lake

Subash Tuladhar, DHM	Senior Divisional Hydrologist
Dinkar Kayastha, DHM	Hydrologist Engineer
Binod Parajuli, DHM	Hydrologist Engineer
Mausam Bhandari, DHM	Hydrologist Engineer
Dhruba Lochan Adhikari, NHMRCC	Hydrologist
Bhushan Joshi, NHMRCC	Assistant Hydrologist
Ishwor Sharma, NHMRCC	Surveyor
Roshan Bhandari, NHMRCC	Surveyor
Pujan Gurung, NHMRCC	Boat Guide

Outline of Daily Activities on the Site

The field measurements were performed as prepared field plan but implementation difficulties were experienced due to strong wind effect every day. After having a recce survey of the lake on the first day, the consultant team and DHM technical supervision team seated together to review the preplanning and changed the plan to survey the lake.

The overall activities carried out are described below:

1) Day One Activities

DGPS and Total Stations survey near outlet started.

2) Day Two Activities

DGPS and Total Station survey continued.

Bathymetric measurement started after an inauguration program followed by Puja according to local tradition. The first line followed was the centerline of the lake. It took 2 hours to reach at the cholupu inlet. The strong valley wind moving up from the down valley obstructed while returning from the right 50m line from the bank. The team waited till 7PM for wind to be weak then started returning with measurement.

3) Day 3 Activities

Total Station and DGPS survey continued.

Bathymetric survey team mobilized and started survey early in the morning at 5 am. There was light mountain wind early in the morning, which prevented the boat for easy movement. Around 7:00 am – 7:30 am there were no winds in the lake but soon a mild valley wind gets started which become stronger as time forwards. The locals informed to us that the wind gets stronger at around 10 am and if the team couldn't cross the central section of the lake at the time it gets obstructed till evening. Discharge measurement at the outlet using current meter was conducted.

4) Day 4 Activities

Total Station and DGPS survey continued.

X-section of the river outlet was conducted.

Bathymetric survey team was mobilized and started survey early in the morning at 5 am.

Discharge measurement at the outlet using current meter was conducted.

5) Day 5 Activities

Bathymetric survey team mobilized and started survey early in the morning at 5 am.

DGPS survey continued to find out the perimeter of the lake using boat.

Discharge measurement at the inlet using current meter was conducted.

6) Day 6 Activities

Bathymetric survey team mobilized and started survey early in the morning at 4:45 am.

7) Day 7 Activities

Bathymetric survey team mobilized and started survey early in the morning at 4:45 am.

8) Day 8 Activities

Bathymetric survey team mobilized and started survey early in the morning at 4:30 am.

The chairman of Lake Conservation Committee also moved to see the survey work conducted.

9) Day 9 Activities

Bathymetric survey team mobilized and started survey early in the morning at 4:30 am.

The chairman of Shey Phoksundo Ward No. 8 also moved to see the survey work conducted.

10) Day 10 Activities

Bathymetric survey team mobilized and started survey early in the morning at 4:30 am.

The chairman of Shey Phoksundo Ward No. 8 also moved to see the survey work conducted. The survey of the lake completed this day.

11) The villagers as well as ward Chairman farewell the survey team while returning.

Annex: VI Topographic Map In Volume III Annex: VII L-Section and X-section map In Volume III Annex VIII Bathymetric Map In Volume III

Annex IX Meetings Minute With Local Leader at Ringmo Village, Phoksundo

3715) 120 2068 (710) 50 2116511 3, 42 31713, 100 UN 21-9, 048, 2113 CI10/9 ais à E 3, as 31 31 214 - St 10741 011241 The stronger & gitty os allor 4 89 This 9, 21218 54 125/2 2150 7 3619) Heustoning rungings, 10814211241 34 Tarin St 10741 01141 (45. start Querily 15-5. Ty alson 98 (May. de Edis Allioci, elin, (suis 1200 1 1 J24181.6 E.U 212 SIL 18 (S. 95 11 501 -11,510 96 an 165 MIG, 0114, 22911 govier ((Sta FIL) भारम विशान विशत भीदम भारतारी जात तथा जीतम विग्तमन te. 11 TEAR 2 - CM122-27 (11 11 11 11 विसोद पराजूली (" " " " युराम राष्ट्र द्वापटीइ जाईड 11 200 man (mar Discharge 11 Batwer इश्वर शामा (सर्वेचर) 11 1) बोस्त भण्डारी (Sider) effor atrated steamed (NHM Research Cent & Consultency P.Ud.) LIFIGMIC FACE (SIMON) 102101 3THISY N 054 2735. (270000 3 cells " Eriq, Firger 2735 (" Solaway +65 TO 014 6100 5ºC

Field Report Presentation

Participant Attendance List

Project: 'To Prepare Bathymetric Map of Phoksundo Lake of Dolpa to update its Inventory' Client: Department of Hydrology and Meteorology Consultant: Nepal Hydrological and Meteorological Research Centre and Consultancy P. Ltd.

Year: 2075/76

Meeting: Presentation on Field Report

Date: 2076.03.13 Venue: Department of Hydrology and Meteorology

5.N.	Name	ame Organization		Signature	
L	Tirtha Raj Addition	CDHM, TU	Associate Prof.	54	
2	Maheswor Shritte	WESS	JOE	Map	
3	Binod Parajuli	DHM	Hydrologist	o anti	
4	Sristy Mahayan	DHM	Hydrologist Engineer	State	
5	Subash Tuladhar	DHM	SDH	Juli	
6	Dinkor Kayaston	DHM	HydrologBt	KI	
7	Dinkar Kayasthon Rudon panyar	DAM	Hy2roly M.	1 97	
8	Saket Kr. Kam	DHM	Hydrologist	Dauetvan	
9	Ishwor Sharma	N hoy - Committee	Surveyor	Betwee .	
10	On Raine Bayraday			Bruly	
11	Dhruba Luchan Adhilani			E.F.	
12	Sontosh Regni	N HM contritony	Chairman	Regin	
13					
14		and the second s	-		
15		Sur President			
16				-	
17				ania a	
18		Lagrant Street			
19					
20					

Draft Report Presentation

Participant Attendance List

Project: 'To Prepare Bathymetric Map of Phoksundo Lake of Dolpa to update its Inventory' Client: Department of Hydrology and Meteorology

Consultant: Nepal Hydrological and Meteorological Research Centre and Consultancy P. Ltd. Year: 2075/76

Meeting: Presentation on Draft Report Date: 2076-03-18

Venue: Department of Hydrology and Meteorology Babarmahal, Kathmandu

S.N.	Name	Organization	Designation	Signature
1	Saraju Kumar Baidhya	DHM	D.G.	
2	Ram Gopal Kharbuja	MOEWRI	7.5.	cong
3	Bikram Shresthe Zorog	DIHM	SDH	DAz-
4	Subash Tuladhar	DHM	SDK	Field
5	Dinkar kayastha	U	Hydrologist	Ka
6	Niaj S. Trodhanange	۲,	BS- Hitandizz	
7	Maheshwor Shrestly	WECS	S. D. E.	Monthe
8	Dhuba do chan adhilan	NIMPROE	Hydolegist -	The second
9	Om Rosne Bagrachiga	ŋ	Sr. Hydralysr	33
10	Santosh Ricgmi		Chairman	Skigm
11				
12				
13				1
14				
15				
16				
17				
18				
19				
20				

Consultative Workshop

Participant Attendance List

Meeting: Consultative Workshop on Draft Report

Project: "To prepare Bathymetric Map of Shey Phoksundo Lake of Dolpa to update it's Inventory."

Client: Department of Hydrology and Meteorology

Consultant: Nepal Hydrological and Meteorological Research Centre and Consultancy P. Ltd. Year: 2075/76

Date: 2076-03-19

Venue: Department of Hydrology and Meteorology Babarmahal, Kathmandu

S.N.	Name	Organization		Signature	
1	Saraju K. Baidyo	DHM	HM D&		
2	Joged Showor Kakemarling	G ' I	DDC	Acion	
3	Righie R. Sharma	WELS	J.S.	-fut	
4	Surcoh Hankey	WECS	SDH	S. Har '	
5	Rajendon Sharm	DNW	S.D.M	Br.	
6	Sharad Jashi	ICIMOD	Glaier Associate	hund	
7	Miraj S. Pradhaway	otton	Prs: Melardep.	P	
8	Chiranjibi Bhetuwal	DHM	Meteorologist		
9	Indina kadel	DHM	SPW	Sanda	
10	Have Ram Lamicha	aut 1,	Hydrologist	P	
11	Hari Krisha Smestha	Nepel Engineering College	Principal	Harr	
12	Binod Parajuli	DHM	Hydrologist	00006	
13	Deepak KC	UNDP	Senior Prog. Officer	Bepan	
14	Sunil Betweel	DMY	Hydrologist	GR	
15	Sristy Mahayan	DhM	Kydeologist	Sinty	
16	Bikron Shreeth Zoox	DHM	SDH	13-4	
17	KAMAL A. JOSHI	MOGHERI	HAZ	Bal	
18	fila Kumahoto	- PHM	Meteoralogich	1:00	
19	Biju Badhan	DHM	SDM.	Bleedber	
20	Bikush Nopal.	1)	Meteoroly	Dathe	

21	Saud Kr. Kan	DHM	Hypologial	Javether
22	Bratisha Mananaha	1)	SDM .	The
23	Ganesh Praind Gura		Account offi	ur fr
24	Subash Tuladhar	, , , , , , , , , , , , , , , , , , ,	SDH	a
25	Dhruba lechan Adhil	Ris HHMRCC	Hydrologist	Alle
26	Santosh Regmi	NAMACC	chairman	Regni
27	Om Ratha Bajrada	Y NO HMRCC	Team leader	an
28				
29				

Workshop Photos

Nepal Hydrological and Meteorological Research Center and Consultancy P. Ltd.

DHM

Annex X 2004 Bathymetric Survey Chart and Interpretation

From: Frank Budz Date: Monday, August 09, 2004 10:18:27 To: 'jagat@dhm.gov.np' Subject: FW: Request for bathy CHT interpretation

Dear Jagat,

I will again try to help answer your questions as best I can.

Thank you very much for reviewing Bathy Chart. The Chart I sent to you is only a part. Please read chart as - The Bathy-500 appears to track correctly and clearly displays the slope on the chart while traveling down (from shallow water to deep water and not from deep to Shallow). Please note that the transducer face was probably not parallel to the water surface at all times as boat was towed by manually and period was windy.

[Frank Budz] If the transducer was not mounted securely so that it was swaying back and forth during survey you will get erroneous data that is difficult to interpret.

Our problem major problem is while interpreting the horizontal part of the Chart. The horizontal part of the Chart while sounding lake bottom is not ZIG-ZAG at some part as it should be like that of traveling from shallow water to deep water. You will notice upward part and downward part not of the graph different.

[Frank Budz] I don't see any upward part on the chart because it is cut off at the end (right side). Is that where the upward part is supposed to be? It would be helpful to us if you included in the picture of the chart arrows to use as pointers and label them as point A, point B etc so that we can better understand your questions.

Other problem is to read depth from graph. Should we read the average point of the graph as graph is not a single sharped lined ? But the digital displayed data matches with upward edge of the graph. Your suggestion is needed. That is why I requested you to read the graph and email us some (two or three points) depths of lake bottom shown by each graph

[Frank Budz] For this I can say that the digital depth will always follow the very top of the horizontal line while tracking the bottom. This is how echosounders work. The very top is where the sound waves first penetrate the seafloor, thus making it the most accurate measurement of the top of the sea floor. The rest of it is simply sound waves penetrating into the seafloor. I don't understand how I can do this. It would have been helpful for you to annotate the chart (mark button).

For your information I have indicted some depth as read by us. There is 137 meter indicated in graph-2 is it Ok?

[Frank Budz] Where is graph-2 ? I have only one section of chart record from you.

Maximum depth shown by graph-1 is 140 meter or 138 meter or more than that.? Similarly is 88 meter and 137 meter indicted in graph -3 are correctly interpreted ?

[Frank Budz] Again, I have only one chart you sent me and no points indicated for me to reference.

Email to Budz with attached files (one part of graph related to max depth is given below)

Dear Budz

Thank you for your reply. Your email answered one major query. But still we need your remarks on chart. I have attached zip file and try to clear you my questions indicating by red texts on chart itself. Please send email if it is not downloaded properly. Please view that the very bottom of the horizontal line touched 160-meter line that is the maximum depth that the bathy 500 can read. Does it make any doubt that the bathy might not have measured depth properly at such condition? Pls note that the boat movement was disturbed by wind to this section.

Sincerely yours

Jagat K. Bhusal

R.		
M		
80 MT .	80 MT .	80 MT .
	7	
	UT BANK	rrester souri (sp. 1 11 degre - Mithele
Malife Streampers		alanana a Mu ana Angelanana a a a a a Mu ata a a ana ana ana ana ana ana ana ana
	and the second	150 MT -

	80 MT		
	0		
123 meter			
Which edge should we consider to read depth ? Top straight line is 140 meter or 144 meter as shown by line ?		Why this part is straight a	nd not wavy like other part?
	160 M	The part is a	ann an ann ann an ann an ann an ann an a

f.budz@syqwestinc.com
bhusaljagat@yahoo.com
r.philibert@syqwestinc.com
RE: Cht interpretation
Wed, 11 Aug 2004 11:35:00 -0400

Dear Jagat,

I did receive your attachment and the chart with your notes. I now better understand what your questions are.

For your question "what do we consider is the real depth", I would say the answer is the 144 meter line. Basically, the wavy lines with jagged edges are typically what you will see as the bottom. This is a result of boat motion and uneven terrain. On your chart there is the almost straight (on the horizontal plane) line that seems to follow the bottom but is just above it and occurs almost right on the 140m mark. I assume this is the anomaly that you question about.

My answer to that is that I can't be totally sure why it is there but it looks like a type of silt layer or maybe fluid mud. Because you are using a 200khz transducer, those frequencies will reflect off materials such as silt, vegetation or weeds and "fluid mud". The reflection is less than what you would see from the bottom but will show up on chart record. At the end of your chart record is seems as though the bottom may be just hard sand or such where you no longer have the spikes.

To be perfectly honest we are not expert surveyors here. We obviously do understand how our equipment works but expert data interpretation requires years of true field experience, which we simply don't have.

I would suggest that when you see data that doesn't quite make sense you run over the area a second time to see if the data is repeatable. Also, as I mentioned before you need to try to keep the transducer from swaying as much as possible.

To answer your other question about the Bathy having a max depth of 160m and if that maybe contributed I would say no to that question.

I hope this helps.

Best Regards, Frank Budz

References

An Inventory of Nepal's wetlands. (1996). *I.* nternational Union for Conservation of Nature.

Bastola, S. C. (2013). Study of Physico-Chemical Parameter. Journal of Interdisciplinary Studies.

Bathymetric Survey of Rupa Lake. (2015). Department of Hydrology and Meteorology.

Bhandari, B. B. (2009). Wise use of Wetlands in Nepal. Banko Janakari.

Department of Hydrology and Meteorolgy. (2014). *Community Based Flood and Glacial Lake Outburst Risk Reduction Project.*

- Fort, M., Braucher, R., Bourles, D., Guillou, V., & Rimal, L. (2014). Geomorphic impacts, age and significance of two giant landslide dams in the Nepal Himalayas: Ringmo-Phoksundo (Dolpo District) and Dhampu-Chhoya (Mustang District). EGU General Assembly.
- Lakes of Nepal: 5358 A Map Based Inventory. (2009). *National Lake Conservation Development Committee*. Ministry of Tourism and Civil Aviation, GoN.

Ministry of Tourism and Civil Aviation, GoN. (2009).

- Mool, P., Bajracharya, S. R., & Joshi, S. P. (2001). Inventory of glaciers, glacial lakes and glacial lake outburst floods: monitoring and early warning systems in the Hindu Kush-Himalayan region Nepal.
- National fisheries development plan-1992/93. (1993). *Department of Agricultural Development*. Fisheries Development Divisionk, GoN.

Nepal Biodiversity Resource Book: Protected Areas, Ramsar Sites, and World Heritage Sites. (2007).

Nepal Climate Vulnerability Study Team. (2009).

Population Census. (2011). Central Bureau of Statistics, GoN.

Preparation of Bathymetric Map of Begnas Lake. (2011). Department of Hydrology and Meteorology.

Preparation of Bathymetric Map of Phewa Lake. (2010). Department of Hydrology and Meteorology.

Preparation of Topographic and Bathymetric Map of Phoksunod Lake. (2004, 2008). Department of Hydrology and Meteorology.

Raya, R. B., Sharma, S., & Gurung, G. (2008). Impact of Land Use on Water Quality of Phewa-Lake Pokhara, Nepal.

Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum Temperature Trends in the Himalaya and Its Vicinity: An Analysis Based on Temperature Records from Nepal for the Period 1971–94. *Journal of Climate*.

Study of Climate and Climatic Variation over Nepal. (2015). Department of Hydrology and Meteorology, GoN.

Topographic and Bathymetric Survey of Imja Glacier Lake. (2009). WWF Nepal Program.

- Weidinger, J. T. (2005). Predesign, failure and displacement mechanisms of large rockslides in the Langthang-, Annapurna- and Kanjiroba Himalayas of Nepal. *Geophysical Research*.
- Yamada, T. (1998). *Glacier lake and its Outburst Flood in the Nepal Himalaya*. Institute of Low Temperature Science, Hokkaido, Japan.