

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Beautiful Data

Edited by Toby Segaran and Jeff Hammerbacher

Beautiful Data
Edited by Toby Segaran and Jeff Hammerbacher

Copyright © 2009 O’Reilly Media, Inc. All rights reserved. Printed in Canada.

Published by O’Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online

editions are also available for most titles (http://my.safaribooksonline.com). For more information,

contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Julie Steele

Production Editor: Rachel Monaghan

Copyeditor: Genevieve d’Entremont

Indexer: Angela Howard

Proofreader: Rachel Monaghan

Cover Designer: Mark Paglietti

Interior Designer: Marcia Friedman

Illustrator: Robert Romano

Printing History:

July 2009: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Beautiful Data, the cover image,

and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by

manufacturers and sellers to distinguish their products are claimed as trademarks. Where those

designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the

designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors

assume no responsibility for errors or omissions, or for damages resulting from the use of the

information contained herein.

ISBN: 978-0-596-15711-1
[F]

http://my.safaribooksonline.com
mailto:corporate@oreilly.com
mailto:corporate@oreilly.com

All royalties from this book will be donated to Creative Commons and the
Sunlight Foundation.

v

C O N T E N T S

PREFACE xi

1 SEEING YOUR LIFE IN DATA 1
by Nathan Yau

Personal Environmental Impact Report (PEIR) 2
your.flowingdata (YFD) 3
Personal Data Collection 3
Data Storage 5
Data Processing 6
Data Visualization 7
The Point 14
How to Participate 15

2 THE BEAUTIFUL PEOPLE: KEEPING USERS IN MIND WHEN
DESIGNING DATA COLLECTION METHODS 17

by Jonathan Follett and Matthew Holm

Introduction: User Empathy Is the New Black 17
The Project: Surveying Customers About a
New Luxury Product 19
Specific Challenges to Data Collection 19
Designing Our Solution 21
Results and Reflection 31

3 EMBEDDED IMAGE DATA PROCESSING ON MARS 35
by J. M. Hughes

Abstract 35
Introduction 35
Some Background 37
To Pack or Not to Pack 40
The Three Tasks 42
Slotting the Images 43
Passing the Image: Communication Among the Three Tasks 46
Getting the Picture: Image Download and Processing 48
Image Compression 50
Downlink, or, It’s All Downhill from Here 52
Conclusion 52

vi C O N T E N T S

4 CLOUD STORAGE DESIGN IN A PNUTSHELL 55
by Brian F. Cooper, Raghu Ramakrishnan, and
Utkarsh Srivastava

Introduction 55
Updating Data 57
Complex Queries 64
Comparison with Other Systems 68
Conclusion 71

5 INFORMATION PLATFORMS AND THE RISE OF THE
DATA SCIENTIST 73

by Jeff Hammerbacher

Libraries and Brains 73
Facebook Becomes Self-Aware 74
A Business Intelligence System 75
The Death and Rebirth of a Data Warehouse 77
Beyond the Data Warehouse 78
The Cheetah and the Elephant 79
The Unreasonable Effectiveness of Data 80
New Tools and Applied Research 81
MAD Skills and Cosmos 82
Information Platforms As Dataspaces 83
The Data Scientist 83
Conclusion 84

6 THE GEOGRAPHIC BEAUTY OF A PHOTOGRAPHIC ARCHIVE 85
by Jason Dykes and Jo Wood

Beauty in Data: Geograph 86
Visualization, Beauty, and Treemaps 89
A Geographic Perspective on Geograph Term Use 91
Beauty in Discovery 98
Reflection and Conclusion 101

7 DATA FINDS DATA 105
by Jeff Jonas and Lisa Sokol

Introduction 105
The Benefits of Just-in-Time Discovery 106
Corruption at the Roulette Wheel 107
Enterprise Discoverability 111
Federated Search Ain’t All That 111
Directories: Priceless 113
Relevance: What Matters and to Whom? 115
Components and Special Considerations 115
Privacy Considerations 118
Conclusion 118

C O N T E N T S vii

8 PORTABLE DATA IN REAL TIME 119
by Jud Valeski

Introduction 119
The State of the Art 120
Social Data Normalization 128
Conclusion: Mediation via Gnip 131

9 SURFACING THE DEEP WEB 133
by Alon Halevy and Jayant Madhaven

What Is the Deep Web? 133
Alternatives to Offering Deep-Web Access 135
Conclusion and Future Work 147

10 BUILDING RADIOHEAD’S HOUSE OF CARDS 149
by Aaron Koblin with Valdean Klump

How It All Started 149
The Data Capture Equipment 150
The Advantages of Two Data Capture Systems 154
The Data 154
Capturing the Data, aka “The Shoot” 155
Processing the Data 160
Post-Processing the Data 160
Launching the Video 161
Conclusion 164

11 VISUALIZING URBAN DATA 167
by Michal Migurski

Introduction 167
Background 168
Cracking the Nut 169
Making It Public 174
Revisiting 178
Conclusion 181

12 THE DESIGN OF SENSE.US 183
by Jeffrey Heer

Visualization and Social Data Analysis 184
Data 186
Visualization 188
Collaboration 194
Voyagers and Voyeurs 199
Conclusion 203

viii C O N T E N T S

13 WHAT DATA DOESN’T DO 205
by Coco Krumme

When Doesn’t Data Drive? 208
Conclusion 217

14 NATURAL LANGUAGE CORPUS DATA 219
by Peter Norvig

Word Segmentation 221
Secret Codes 228
Spelling Correction 234
Other Tasks 239
Discussion and Conclusion 240

15 LIFE IN DATA: THE STORY OF DNA 243
by Matt Wood and Ben Blackburne

DNA As a Data Store 243
DNA As a Data Source 250
Fighting the Data Deluge 253
The Future of DNA 257

16 BEAUTIFYING DATA IN THE REAL WORLD 259
by Jean-Claude Bradley, Rajarshi Guha, Andrew Lang,
Pierre Lindenbaum, Cameron Neylon, Antony Williams,
and Egon Willighagen

The Problem with Real Data 259
Providing the Raw Data Back to the Notebook 260
Validating Crowdsourced Data 262
Representing the Data Online 263
Closing the Loop: Visualizations to Suggest
New Experiments 271
Building a Data Web from Open Data and Free Services 274

17 SUPERFICIAL DATA ANALYSIS: EXPLORING MILLIONS OF
SOCIAL STEREOTYPES 279

by Brendan O’Connor and Lukas Biewald

Introduction 279
Preprocessing the Data 280
Exploring the Data 282
Age, Attractiveness, and Gender 285
Looking at Tags 290
Which Words Are Gendered? 294
Clustering 295
Conclusion 300

C O N T E N T S ix

18 BAY AREA BLUES: THE EFFECT OF THE HOUSING CRISIS 303
by Hadley Wickham, Deborah F. Swayne,
and David Poole

Introduction 303
How Did We Get the Data? 304
Geocoding 305
Data Checking 305
Analysis 306
The Influence of Inflation 307
The Rich Get Richer and the Poor Get Poorer 308
Geographic Differences 311
Census Information 314
Exploring San Francisco 318
Conclusion 319

19 BEAUTIFUL POLITICAL DATA 323
by Andrew Gelman, Jonathan P. Kastellec,
and Yair Ghitza

Example 1: Redistricting and Partisan Bias 324
Example 2: Time Series of Estimates 326
Example 3: Age and Voting 328
Example 4: Public Opinion and Senate Voting on
Supreme Court Nominees 328
Example 5: Localized Partisanship in Pennsylvania 330
Conclusion 332

20 CONNECTING DATA 335
by Toby Segaran

What Public Data Is There, Really? 336
The Possibilities of Connected Data 337
Within Companies 338
Impediments to Connecting Data 339
Possible Solutions 343
Conclusion 348

CONTRIBUTORS 349

INDEX 357

xi

Chapter

Preface

WHEN WE WERE FIRST APPROACHED WITH THE IDEA OF A FOLLOW-UP TO BEAUTIFUL CODE, THIS TIME

about data, we found the idea exciting and very ambitious. Collecting, visualizing, and

processing data now touches every professional field and so many aspects of daily life that

a great collection would have to be almost unreasonably broad in scope. So we contacted a

highly diverse group of people whose work we admired, and were thrilled that so many

agreed to contribute.

This book is the result, and we hope it captures just how wide-ranging (and beautiful)

working with data can be. In it you’ll learn about everything from fighting with govern-

ments to working with the Mars lander; you’ll learn how to use statistics programs, make

visualizations, and remix a Radiohead video; you’ll see maps, DNA, and something we can

only really call “data philosophy.”

The royalties for this book are being donated to Creative Commons and the Sunlight

Foundation, two organizations dedicated to making the world better by freeing data. We

hope you’ll consider how your own encounters with data shape the world.

xii P R E F A C E

How This Book Is Organized
The chapters in this book follow a loose arc from data collection through data storage,

organization, retrieval, visualization, and finally, analysis.

Chapter 1, Seeing Your Life in Data, by Nathan Yau, looks at the motivations and challenges

behind two projects in the emerging field of personal data collection.

Chapter 2, The Beautiful People: Keeping Users in Mind When Designing Data Collection Methods,

by Jonathan Follett and Matthew Holm, discusses the importance of trust, persuasion, and

testing when collecting data from humans over the Web.

Chapter 3, Embedded Image Data Processing on Mars, by J. M. Hughes, discusses the chal-

lenges of designing a data processing system that has to work within the constraints of

space travel.

Chapter 4, Cloud Storage Design in a PNUTShell, by Brian F. Cooper, Raghu Ramakrishnan,

and Utkarsh Srivastava, describes the software Yahoo! has designed to turn its globally dis-

tributed data centers into a universal storage platform for powering modern web applications.

Chapter 5, Information Platforms and the Rise of the Data Scientist, by Jeff Hammerbacher,

traces the evolution of tools for information processing and the humans who power them,

using specific examples from the history of Facebook’s data team.

Chapter 6, The Geographic Beauty of a Photographic Archive, by Jason Dykes and Jo Wood, draws

attention to the ubiquity and power of colorfully visualized spatial data collected by a volun-

teer community.

Chapter 7, Data Finds Data, by Jeff Jonas and Lisa Sokol, explains a new approach to think-

ing about data that many may need to adopt in order to manage it all.

Chapter 8, Portable Data in Real Time, by Jud Valeski, dives into the current limitations of

distributing social and location data in real time across the Web, and discusses one poten-

tial solution to the problem.

Chapter 9, Surfacing the Deep Web, by Alon Halevy and Jayant Madhavan, describes the

tools developed by Google to make searchable the data currently trapped behind forms on

the Web.

Chapter 10, Building Radiohead’s House of Cards, by Aaron Koblin with Valdean Klump, is

an adventure story about lasers, programming, and riding on the back of a bus, and end-

ing with an award-winning music video.

Chapter 11, Visualizing Urban Data, by Michal Migurski, details the process of freeing and

beautifying some of the most important data about the world around us.

Chapter 12, The Design of Sense.us, by Jeffrey Heer, recasts data visualizations as social

spaces and uses this new perspective to explore 150 years of U.S. census data.

P R E F A C E xiii

Chapter 13, What Data Doesn’t Do, by Coco Krumme, looks at experimental work that

demonstrates the many ways people misunderstand and misuse data.

Chapter 14, Natural Language Corpus Data, by Peter Norvig, takes the reader through some

evocative exercises with a trillion-word corpus of natural language data pulled down from

across the Web.

Chapter 15, Life in Data: The Story of DNA, by Matt Wood and Ben Blackburne, describes

the beauty of the data that is DNA and the massive infrastructure required to create, cap-

ture, and process that data.

Chapter 16, Beautifying Data in the Real World, by Jean-Claude Bradley, Rajarshi Guha,

Andrew Lang, Pierre Lindenbaum, Cameron Neylon, Antony Williams, and Egon

Willighagen, shows how crowdsourcing and extreme transparency have combined to

advance the state of drug discovery research.

Chapter 17, Superficial Data Analysis: Exploring Millions of Social Stereotypes, by Brendan

O’Connor and Lukas Biewald, shows the correlations and patterns that emerge when peo-

ple are asked to anonymously rate one another’s pictures.

Chapter 18, Bay Area Blues: The Effect of the Housing Crisis, by Hadley Wickham, Deborah F.

Swayne, and David Poole, guides the reader through a detailed examination of the recent

housing crisis in the Bay Area using open source software and publicly available data.

Chapter 19, Beautiful Political Data, by Andrew Gelman, Jonathan P. Kastellec, and Yair

Ghitza, shows how the tools of statistics and data visualization can help us gain insight

into the political process used to organize society.

Chapter 20, Connecting Data, by Toby Segaran, explores the difficulty and possibilities of

joining together the vast number of data sets the Web has made available.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements

such as variable or function names, databases, data types, environment variables, state-

ments, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined

by context.

xiv P R E F A C E

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this

book in your programs and documentation. You do not need to contact us for permission

unless you’re reproducing a significant portion of the code. For example, writing a pro-

gram that uses several chunks of code from this book does not require permission. Selling

or distributing a CD-ROM of examples from O’Reilly books does require permission.

Answering a question by citing this book and quoting example code does not require per-

mission. Incorporating a significant amount of example code from this book into your

product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,

author, publisher, and ISBN. For example: “Beautiful Data, edited by Toby Segaran and Jeff

Hammerbacher. Copyright 2009 O’Reilly Media, Inc., 978-0-596-15711-1.”

If you feel your use of code examples falls outside fair use or the permission given here,

feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

http://oreilly.com/catalog/9780596157111

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our website at:

http://oreilly.com

mailto:permissions@oreilly.com
http://oreilly.com/catalog/9780596157111
mailto:bookquestions@oreilly.com
http://oreilly.com

P R E F A C E xv

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite

technology book, that means the book is available online through the

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily

search thousands of top tech books, cut and paste code samples, download chapters, and

find quick answers when you need the most accurate, current information. Try it for free

at http://my.safaribooksonline.com.

http://oreilly.com
http://my.safaribooksonline.com

1

Chapter 1 C H A P T E R O N E

Seeing Your Life in Data
Nathan Yau

IN THE NOT-TOO-DISTANT PAST, THE WEB WAS ABOUT SHARING, BROADCASTING, AND DISTRIBUTION.
But the tide is turning: the Web is moving toward the individual. Applications spring up

every month that let people track, monitor, and analyze their habits and behaviors in

hopes of gaining a better understanding about themselves and their surroundings. People

can track eating habits, exercise, time spent online, sexual activity, monthly cycles, sleep,

mood, and finances online. If you are interested in a certain aspect of your life, chances

are that an application exists to track it.

Personal data collection is of course nothing new. In the 1930s, Mass Observation, a social

research group in Britain, collected data on various aspects of everyday life—such as

beards and eyebrows, shouts and gestures of motorists, and behavior of people at war

memorials—to gain a better understanding about the country. However, data collection

methods have improved since 1930. It is no longer only a pencil and paper notepad or a

manual counter. Data can be collected automatically with mobile phones and handheld

computers such that constant flows of data and information upload to servers, databases,

and so-called data warehouses at all times of the day.

With these advances in data collection technologies, the data streams have also developed

into something much heftier than the tally counts reported by Mass Observation partici-

pants. Data can update in real-time, and as a result, people want up-to-date information.

2 C H A P T E R O N E

It is not enough to simply supply people with gigabytes of data, though. Not everyone is a

statistician or computer scientist, and not everyone wants to sift through large data sets.

This is a challenge that we face frequently with personal data collection.

While the types of data collection and data returned might have changed over the years,

individuals’ needs have not. That is to say that individuals who collect data about them-

selves and their surroundings still do so to gain a better understanding of the information

that lies within the flowing data. Most of the time we are not after the numbers them-

selves; we are interested in what the numbers mean. It is a subtle difference but an impor-

tant one. This need calls for systems that can handle personal data streams, process them

efficiently and accurately, and dispense information to nonprofessionals in a way that is

understandable and useful. We want something that is more than a spreadsheet of numbers.

We want the story in the data.

To construct such a system requires careful design considerations in both analysis and

aesthetics. This was important when we implemented the Personal Environmental

Impact Report (PEIR), a tool that allows people to see how they affect the environment

and how the environment affects them on a micro-level; and your.flowingdata (YFD),

an in-development project that enables users to collect data about themselves via Twitter, a

microblogging service.

For PEIR, I am the frontend developer, and I mostly work on the user interface and data

visualization. As for YFD, I am the only person who works on it, so my responsibilities are

a bit different, but my focus is still on the visualization side of things. Although PEIR and

YFD are fairly different in data type, collection, and processing, their goals are similar.

PEIR and YFD are built to provide information to the individual. Neither is meant as an

endpoint. Rather, they are meant to spur curiosity in how everyday decisions play a big

role in how we live and to start conversations on personal data. After a brief background

on PEIR and YFD, I discuss personal data collection, storage, and analysis with this idea in

mind. I then go into depth on the design process behind PEIR and YFD data visualizations,

which can be generalized to personal data visualization as a whole. Ultimately, we want to

show individuals the beauty in their personal data.

Personal Environmental Impact Report (PEIR)
PEIR is developed by the Center for Embedded Networked Sensing at the University of

California at Los Angeles, or more specifically, the Urban Sensing group. We focus on

using everyday mobile technologies (e.g., cell phones) to collect data about our surround-

ings and ourselves so that people can gain a better understanding of how they interact

with what is around them. For example, DietSense is an online service that allows people

to self-monitor their food choices and further request comments from dietary specialists;

Family Dynamics helps families and life coaches document key features of a family’s daily

interactions, such as colocation and family meals; and Walkability helps residents and

pedestrian advocates make observations and voice their concerns about neighborhood

S E E I N G Y O U R L I F E I N D A T A 3

walkability and connections to public transit.* All of these projects let people get involved in

their communities with just their mobile phones. We use a phone’s built-in sensors, such as

its camera, GPS, and accelerometer, to collect data, which we use to provide information.

PEIR applies similar principles. A person downloads a small piece of software called Cam-

paignr onto his phone, and it runs in the background. As he goes about his daily activi-

ties—jogging around the track, driving to and from work, or making a trip to the grocery

store, for example—the phone uploads GPS data to PEIR’s central servers every two min-

utes. This includes latitude, longitude, altitude, velocity, and time. We use this data to esti-

mate an individual’s impact on and exposure to the environment. Environmental

pollution sensors are not required. Instead, we use what is already available on many

mobile phones—GPS—and then pass this data with context, such as weather, into estab-

lished environmental models. Finally, we visualize the environmental impact and expo-

sure data. The challenge at this stage is to communicate meaning in data that is unfamiliar

to most. What does it mean to emit 1,000 kilograms of carbon in a week? Is that a lot or is

that a little? We have to keep the user and purpose in mind, as they drive the system

design from the visualization down to the data collection and storage.

your.flowingdata (YFD)
While PEIR uses a piece of custom software that runs in the background, YFD requires that

users actively enter data via Twitter. Twitter is a microblogging service that asks a very simple

question: what are you doing right now? People can post, or more appropriately, tweet, what

they are doing via desktop applications, email, instant messaging, and most importantly (as

far as YFD is concerned), SMS, which means people can tweet with their mobile phones.

YFD uses Twitter’s ubiquity so that people can tweet personal data from anywhere they

can send SMS messages. Users can currently track eating habits, weight, sleep, mood, and

when they go to the bathroom by simply posting tweets in a specific format. Like PEIR,

YFD shows users that it is the little things that can have a profound effect on our way of

life. During the design process, again, we keep the user in mind. What will keep users

motivated to manually enter data on a regular basis? How can we make data collection as

painless as possible? What should we communicate to the user once the data has been

logged? To this end, I start at the beginning with data collection.

Personal Data Collection
Personal data collection is somewhat different from scientific data gathering. Personal data

collection is usually less formal and does not happen in a laboratory under controlled condi-

tions. People collect data in the real world where there can be interruptions, bad network

connectivity, or limited access to a computer. Users are not necessarily data experts, so

when something goes wrong (as it inevitably will), they might not know how to adjust.

* CENS Urban Sensing, http://urban.cens.ucla.edu/

http://urban.cens.ucla.edu/

4 C H A P T E R O N E

Therefore, we have to make data collection as simple as possible for the user. It should be

unobtrusive, intuitive, and easy to access so that it is more likely that data collection

becomes a part of the daily routine.

Working Data Collection into Routine

This is one of the main reasons I chose Twitter as YFD’s data proxy from phone or com-

puter to the database. Twitter allows users to post tweets via several outlets. The ability to

post tweets via mobile phone lets users log data from anywhere their phones can send

SMS messages, which means they can document something as it happens and do not have

to wait until they have access to a computer. A person will most likely forget if she has to

wait. Accessibility is key.

One could accomplish something similar with email instead of Twitter since most mobile

phones let people send SMS to an email address, and this was in fact the original imple-

mentation of YFD. However, we go back to data collection as a natural part of daily rou-

tine. Millions of people already use Twitter regularly, so part of the challenge is already

relieved. People do use email frequently as well, and it is possible they are more comfort-

able with it than Twitter, but the nature of the two is quite different. On Twitter, people

update several times a day to post what they are doing. Twitter was created for this single

purpose. Maybe a person is eating a sandwich, going out for a walk, or watching a movie.

Hundreds of thousands tweet this type of information every day. Email, on the other

hand, lends itself to messages that are more substantial. Most people would not email a

friend to tell them they are watching a television program—especially not every day or

every hour.

By using Twitter, we get this posting regularity that hopefully transfers to data collection. I

tried to make data logging on YFD feel the same as using Twitter. For instance, if someone

eats a salami sandwich, he sends a message: “ate salami sandwich.” Data collection

becomes conversational in this way. Users do not have to learn a new language like SQL.

Instead, they only have to remember keywords followed by the value. In the previous

example, the keyword is ate and the value is salami sandwich. To track sleep, a user simply

sends a keyword: goodnight when going to sleep and gmorning when waking.

In some ways, posting regularity with PEIR was less challenging than with YFD. Because

PEIR collects data automatically in the background, the user just has to start the software

on his phone with a few presses of a button. Development of that software came with its

own difficulties, but that story is really for a different article.

Asynchronous data collection

For both PEIR and YFD, we found that asynchronous data collection was actually neces-

sary. People wanted to enter and upload data after the event(s) of interest had occurred.

On YFD, people wanted to be able to add a timestamp to their tweets, and PEIR users

wanted to upload GPS data manually.

S E E I N G Y O U R L I F E I N D A T A 5

As said before, the original concept of YFD was that people would enter data only when

something occurred. That was the benefit and purpose of using Twitter. However, many

people did not use Twitter via their mobile phone, so they would have to wait until a com-

puter was available. Even those who did send SMS messages to Twitter often forgot to log

data; some people just wanted to enter all of their data at the end of the day.

Needless to say, YFD now supports timestamps. It was still important that data entry syn-

tax was as close to conversational as possible. To accommodate this, users can append the

time to any of their tweets. For example, “ate roast chicken and potatoes at 6:00pm” or

“goodnight at 23:00.” The timestamp syntax is to simply append “at hh:mm” to the end of

a tweet. I also found it useful to support both standard and military time formats. Finally,

when a user enters a timestamp, YFD will record the most recent occurrence of the time, so

in the previous “goodnight” example, YFD would enter the data point for the previous night.

PEIR was also originally designed only for “in the moment” data collection. As mentioned

before, Campaignr runs on a user’s mobile phone and uploads GPS data periodically (up to

every 20 seconds) to our central server. This adds up to hundreds of thousands of data

points for a single user who runs PEIR every day with very little effort from the user’s side.

Once the PEIR application is installed on a phone, a user simply starts the application with

a couple of button presses. However, almost right from the beginning, we found we could

not rely on having a network connection 100% of the time, since there are almost always

areas where there is no signal from the service carrier. The simplest, albeit naive, approach

would be to collect and upload data only when the phone has a connection, but we might

lose large chunks of data. Instead, we use a cache to store data on a phone’s local memory

until connectivity resumes. We also provide a second option to collect data without any

synchronous uploading at all.

The takeaway point is that it is unreasonable to expect people to collect data for events at

the time they happen. People forget or it is inconvenient at the time. In any case, it is

important that users are able to enter data later on, which in turn affects the design of the

next steps in the data flow.

Data Storage
For both YFD and PEIR, it was important to keep in mind what we were going to do with

the data once it was stored. Oftentimes, database mechanisms and schemas are decided on

a whim, and the researchers regret it further down the road, either because their choice

makes it hard to process the data or because the database is not extensible. The choice for

YFD was not particularly difficult. We use MySQL for other projects, and YFD involves mostly

uncomplicated insert and select statements, so it was easy to set up. Also, data is manually

entered—not continuously uploaded like PEIR—so the size of database tables is not an issue

in these early stages of development. The main concern was that I wanted to be able to

extend the schema when I added new trackers, so I created the schema with that in mind.

6 C H A P T E R O N E

PEIR, on the other hand, required more careful database development. We perform thou-

sands of geography-based computations every few minutes, so we used PostGIS to add

support for geographic objects to a PostgreSQL database. Although MySQL offers GIS and

spatial extensions, we decided that PostGIS with PostgreSQL was more robust for PEIR’s

needs.

This is perhaps oversimplifying our database design process, however. I should back up a

bit. We are a group of 10 or so graduate students with our own research interests, and as

expected, work on individual components of PEIR. This affected how we work a great

deal. PEIR data was very scattered to begin with. We did not use a unified database

schema; we created multiple databases as we needed them, and did not follow any spe-

cific design patterns. If anyone joined PEIR during this mid-early stage, he would have

been confused by where and what all the data was and who to contact to find out. I say

this because I joined the PEIR project midway. To alleviate this scattered problem, we

eventually froze all development, and one person who had his hand in all parts of PEIR

skillfully pieced everyone’s code and database tables together. It became quite clear that

this consolidation of code and schemas was necessary once user experience develop-

ment began. In retrospect, it would have been worth the extra effort to take a more cal-

culated approach to data storage in the early goings, but such is the nature of graduate

studies.

Coordination and code consolidation are not an issue with YFD, since there is only one

developer. I can change the database schema, user interface, and data collection mecha-

nism with little fuss. I also use Django, a Python web framework, which uses a model-

view-control approach and allows for rapid and efficient development. I do, however,

have to do everything myself. Because of the group’s diversity in statistics, computer sci-

ence, engineering, GIS, and environmental science, PEIR is able to accomplish more—

most notably in the area of data processing, as discussed in the next section. So there are

certainly advantages and disadvantages to developing with a large group.

Data Processing
Data processing is the important underpinning of the personal data collection system that

users almost never see and usually are not interested in. They tend to be more interested in

the results of the processing. This is the case for YFD. PEIR users, on the other hand, benefit

from seeing how their data is processed, and it in turn affects the way they interpret impact

and exposure.

The analytical component of PEIR consists of a series of server-side processing steps that

start with GPS data to estimate impact and exposure. To be precise, we can divide the pro-

cessing into four separate phases:*

* PEIR, http://peir.cens.ucla.edu

http://peir.cens.ucla.edu

S E E I N G Y O U R L I F E I N D A T A 7

1. Trace correction and annotation: Where possible, the error-prone, undersampled

location traces are corrected and annotated using estimation techniques such as map

matching with road network and building parcel data. Because these corrections and

annotations are estimates, they do carry along uncertainties.

2. Activity and location classification: The corrected and annotated data is

automatically classified as traveling or stationary using web services to provide a first

level of refinement to the model output for a given person on a given day. The data is

also split into trips based on dwell time.

3. Context estimation: The corrected and classified location data is used as input to

web-based information sources on weather, road conditions, and aggregated driver

behaviors.

4. Exposure and impact calculation: Finally, the fine-grained, classified data and

derived data is used as input to geospatial data sets and microenvironment models

that are in turn used to provide an individual’s personalized estimates.

While PEIR’s focus is still on the results of this four-step process, we eventually found that

users wanted to know more about how impact and exposure were estimated. So for each

chunk of data we provide details of the process, such as what percentage of time was spent

on a freeway and what the weather was like around where the user was traveling. We

also include a detailed explanation for every provided metric. In this case, transparency in

the estimation process allows users to see how their actions have an effect on impact and

exposure rather than just knowing how much or how little they are polluting their neigh-

borhood. There is, of course, such a thing as information overload, so we are careful in

how much (and how little) we show. We address much of these issues in the next section.

Data Visualization
Once data is collected, uploaded, and processed, users need to be able to access, evaluate,

and explore their data. The main design goal behind YFD and PEIR was to make personal

data understandable to nonprofessionals. Data has to be presented in a way that is relat-

able; it has to be humanized. Oftentimes we get caught up in statistical charts and graphs,

which are extremely useful, but at the same time we want to engage users so that they

stay interested, continue collecting data, and keep coming back to the site to gauge their

progress in whatever they are tracking. Users should understand that the data is about

them and reflect the choices they make in their daily lives.

I like to think of data visualization as a story. The main character is the user, and we can go

two ways. A story of charts and graphs might read a lot like a textbook; however, a story

with context, relationships, interactions, patterns, and explanations reads like a novel. This

is not to say that one or the other is better. There are plenty of interesting textbooks, and

probably just as many—if not more—boring novels. We want something in between the

textbook and novel when we visualize personal data. We want to present the facts, but we

also want to provide context, like the who, what, when, where, and why of the numbers.

We are after emotion. Data often can be sterile, but only if we present it that way.

8 C H A P T E R O N E

PEIR

In the case of PEIR, we were met with the challenge of presenting scientific data—carbon

impact, exposure to high levels of particulate matter, and impact to sensitive sites such as

hospitals and schools. Impact and exposure are not a part of everyday conversation. Most

people do not know whether 1,000 kilograms of carbon emissions in a day is a lot or a lit-

tle. Is one hour of exposure to high levels of particulate matter normal? These types of

questions factor into PEIR’s visualization design. It is important to remember, however,

that even though the resulting data is not immediately understandable, it is all derived

from location data, which is extremely intuitive. There are perhaps few types of data that

are so immediately understandable as one’s place in physical space. Therefore, we use

maps as the visualization anchor point and work from there.

Mapping location-based data

Location-based data drives the PEIR system, so an interactive map is the core of the user

interface. We initially used the Google Maps API, but quickly nixed it in the interest of

flexibility. Instead, we use Modest Maps. It is a display and interaction library for tile-

based maps in Flash and implemented in ActionScript 3.0. Modest Maps provides a core

set of features, such as panning and zooming, but allows designers and developers to eas-

ily customize displays. Modest Maps implementations can easily switch map tiles, whether

the choice is to use Microsoft’s map tiles, Google’s, custom-built ones, or all of the above.

We are free to adjust color, layout, and overall style, which lend themselves to good

design practice and useful visualization, and the flexibility allows us to incorporate our

own visualizations on the map or as a supplement. In the end, we do not want to limit

ourselves to just maps, and Modest Maps provides the flexibility we need to do this.

Experimenting with visual cues

We experimented with a number of different ways to represent PEIR data before deciding

on the final mapping scheme. During the design process, we considered several parameters:

• How can users interact with a lot of traces at once without cluttering the map?

• How can we represent both stationary (user is idle) and traveling (user is moving) data

chunks at the same time?

• How do we display values from all four microenvironment models?

• What colors should we use to represent GPS trace, impact, and exposure?

• How do we shift focus toward the actual data and away from the underlying map tiles?

Mapping multivariate location traces

In the early stages of the design process, we mapped GPS traces the way that users typically

see location tracks: simply a line that goes from point to point. This was before taking values

from the microenvironment models into account, so the map was a basic implementation

S E E I N G Y O U R L I F E I N D A T A 9

using Modest Maps and tiles from OpenStreetMap. GPS traces were mono-colored and rep-

resented nothing but location; there was a circle at the end so that the user would know

where the trip began and ended.

This worked to a certain extent, but we soon had to visualize more data, so we changed

the format. We colored traces based on impact and exposure values. The color scheme

used five shades of red. Higher levels of, say, carbon impact were darker shades of red.

Similarly, trips that had lower carbon impact were lighter shades of red.

The running metaphor is that the more impact the user has on the environment, the more

the trip should stand out on the map. The problem with this implementation was that the

traces on the map did not stand out (Figure 1-1). We tried using brighter colors, but the

brightly colored trips clashed with the existing colors on the map. Although we want

traces to stand out, we do not want to strain the user’s eyes. To solve this problem we tried

a different mapping scheme that again made all trips on the map mono-color, but used cir-

cles to encode impact and exposure. All traces were colored white, and the model values

were visually represented with circles that varied in size at the end of each trip. Greater

values were displayed as circles larger in area while lesser values were smaller in area. This

design scheme was short-lived.

One problem with representing values only at the end of a trace was that users thought the

circles indicated that something happened at the very end of each trip. However, this is not

the case. The map should show that something is happening during the entirety of a trip.

Carbon is emitted everywhere you travel, not collected and then released at a destination.

We switched back to color-coding trips and removed the scaled area circles representing

our models’ values. At this point in the design process, we now had two types of GPS data:

traveling and stationary. Traveling trips meant that the user was moving, whether on foot

or in a vehicle; stationary chunks are times when the user is not moving. She might be sit-

ting at a desk or stuck in traffic. To display stationary chunks, we did not completely aban-

don the idea of using area circles on the map. Larger circles mean longer duration, and

smaller circles mean shorter duration. Similar to traveling trips, which are represented by

F I G U R E 1 - 1 . We experimented with different visual cues on a map to best display location data with impact and

exposure values. The above shows three iterations during our preliminary design. The left map shows GPS traces color-

coded by carbon impact; in the center map, we encoded impact with uni-color area circles; on the right, we incorporated

GPS data showing when the user was idle and went back to using color-coding. (See Color Plate 1.)

10 C H A P T E R O N E

lines, area circles are color-coded appropriately. For example, if the user chooses to color-

code by particulate matter exposure, a stationary chunk that was spent idle on the free-

way is shown as a brightly colored circle.

However, we are again faced with same problem as before: trying to make traces stand out

on the map without clashing with the map’s existing colors. We already tried different

color schemes for the traces, but had not yet tried changing the shades of the actual map.

Inspired by Trulia Snapshot, which maps real estate properties, we grayscaled map tiles

and inverted the color filters so that map items that were originally lightly colored turned

dark and vice versa. To be more specific, the terrain was originally lightly colored, so now

it is dark gray, and roads that were originally dark are now light gray. This darkened map

lets lightly colored traces stand out, and because the map is grayscale, there is less clashing

(Figure 1-2). Users do not have to try hard to distinguish their data from roads and terrain.

Modest Maps provided this flexibility.

Choosing a color scheme

Once we established map tiles as the dark background and represented trips in the light

foreground, we decided what colors to use. This is important because users recognize

some colors as specific types of events. For example, red often means to stop or that there

is danger ahead, whereas green means progress or growth, especially from an environ-

mental standpoint.

It is also important to not use too many contrasting colors. Using dissimilar colors without

any progression indicates categorical data. Model values, however, are on a continuous

scale. Therefore, we use colors with a subtle gradient. In the earlier versions we tried a

color scale that contained different shades of green. Users commented that because green

usually means good or environmentally friendly, it was strange to see high levels of

impact and exposure encoded with that color. Instead, we still use shades of green but also

incorporate yellows. From low to high values, we incrementally shift from green to yel-

low, respectively. Trips that have impact or exposure values of zero are white.

F I G U R E 1 - 2 . In the current mapping scheme, we use color filters to highlight the data. The map serves solely as context.

Linked histograms show impact and exposure distributions of mapped data. When the user scrolls over a histogram bar,

the corresponding GPS data is highlighted on the map. (See Color Plate 2.)

S E E I N G Y O U R L I F E I N D A T A 11

Making trips interactive

Users can potentially map hundreds of trips at one time, providing an overview of travel-

ing habits, impact, and exposure, but the user also needs to read individual trip details.

Mapping a trip is not enough. Users have to be able to interact with trips so that they

know the context of their travels.

When the user scrolls over a trip on the PEIR map, that trip is highlighted, while all other

trips are made less prominent and blend in with the background without completely dis-

appearing. To be more specific, transparency of the trip of interest is decreased while the

other trips are blurred by a factor of five. Cabspotting, a visualization that maps cab activi-

ties in San Francisco, inspired this effect. When the user clicks on a trip on the map, the

trip log automatically scrolls to the trip of interest. Again, the goal is to provide users with

as much context as possible without confusing them or cluttering the screen.

These features, of course, handle multiple trips only to a certain extent. For example, if

there are hundreds of long trips in a condensed area, they can be difficult to navigate due

to clutter. This is an area we plan to improve as we incorporate user-contributed metadata

such as tags and classification.

Displaying distributions

PEIR provides histograms on the right side of the map to show distributions of impact and

exposure for selected trips. There are four histograms, one for each microenvironment

model. The histograms automatically update whenever the user selects a trip from the trip

log. If trips are mostly high in impact or exposure, the histograms are skewed to the right;

similarly, if trips are mostly low in impact or exposure, the histograms are skewed to the

left.

We originally thought the histograms would be useful since they are so widely used in sta-

tistics, but that proved not to be the case. The histograms actually confused more than

they provided insight. Although a small portion of the test group thought they were use-

ful, most expected the horizontal axis to be time and the vertical axis to be the amount of

impact or exposure. People seemed more interested in patterns over time than overall dis-

tributions. Therefore, we switched to time-based bar charts (Figure 1-3). Users are able to

see their impact and exposure over time and browse by week.

F I G U R E 1 - 3 . Time series bar charts proved to be more effective than value-based histograms.

Sat

22

SunFri

6

Mon Tue

20

Wed

10

Thu

7

Carbon impact (kilograms) [?]

Sat

2.4

SunFri

1.9

Mon Tue

0.7

Wed

0.2

Thu

0.3

Particulate matter exposure (hours) [?]

12 C H A P T E R O N E

Sharing personal data

PEIR lets users share their impact and exposure with Facebook friends as another way to

compare values. It is through sharing that we get around the absolute scale interpretation

of axes and shift emphasis onto relative numbers, which better helps users make infer-

ences. Although 1,000 kilograms of carbon might seem like a lot, a comparison against

other users could change that misconception. Our Facebook application shows aggregated

values in users’ Facebook profiles compared against other Facebook friends who have

installed the PEIR Facebook application (Figure 1-4).

The PEIR Facebook application shows bar graphs for the user’s impact and exposure and

the average of impact and exposure for his or her friends. The application also shows over-

all rank. Those who have less impact or exposure are higher in rank. Icons also provide

more context. If impact is high, an icon with a chimney spouting a lot of smoke appears. If

impact is low, a beach with clear skies appears.

Shifting attention back to the PEIR interface, users also have a network page in addition to

their personal profile. The network page again shows rankings for the last week of impact

and exposure, but also shows how the user’s friends rank. The goal is for users to try to

climb in the rankings for least impact and exposure while at the same time encouraging

their friends to try to improve. Although actual values in units of kilograms or hours for

impact or exposure might be unclear at first, rankings are immediately useful. When users

pursue higher ranking, values from PEIR microenvironment models mean more in the

same way that a score starts to mean something while playing a video game.

The reader should take notice that no GPS data is shared. We take data privacy very seri-

ously and make many efforts to keep certain data private, which is why only impact and

exposure aggregates are shown in the network pages.

F I G U R E 1 - 4 . PEIR’s Facebook application lets users share their impact and exposure findings as well as compare their

values with friends. (See Color Plate 3.)

S E E I N G Y O U R L I F E I N D A T A 13

YFD

Whereas PEIR deals with data that is not immediately relatable, YFD is on the opposite

side of the spectrum. YFD helps users track data that is a part of everyday conversation.

Like PEIR, though, YFD aims to make the little things in our lives more visible. It is the

aggregate of small choices that have a great effect. The visualization had to show this.

To begin, we go back to one of the challenges mentioned earlier. We want users to tweet

frequently and work personal data collection into their daily Twitter routine. What are the

motivations behind data collection? Why does a user track what he eats or his sleep hab-

its? Maybe someone wants to lose weight so that he feels more confident around the

opposite sex, or he wants to get more sleep so that he does not fall asleep at his desk.

Another user, however, might want to gain weight, because she lost weight when she was

sick, or maybe she sleeps too much and always feels groggy when she gets up. Others just

might be curious. Whatever the motivation, it is clear that everyone has his or her own

reasons for personal data collection. YFD highlights that motivation as a reminder to the

user, because no matter what diet system someone is on or sleep program he is trying,

people will not change unless they really want to. Notice the personal words of motivation

in large print in the middle of the screen in Figure 1-5.

It is also worth noting that each tracker’s page shows what has happened most recently at

the top. This serves a few purposes. First, it will update whenever the user tweets a data

point, so that the user can see his status whenever he logs in to YFD. Second, we do not

want to stray too far from the feel of Twitter, again to reinforce working YFD tweets into

F I G U R E 1 - 5 . People track their weight and what they eat for different reasons. YFD places motivation front and center.

(See Color Plate 4.)

14 C H A P T E R O N E

the Twitter routine. Finally, the design choice largely came out of the experience with

PEIR. Users seem to expect time-based visualization, so most YFD visualization is just that.

There is one exception, though—the feelings and emotions tracker (Figure 1-6). As any-

one can tell you, emotions are incredibly complicated. How do you quantify happiness or

sadness or nervousness? It did not seem right to break emotions down into graphs and

numbers, so a sorted tag cloud is used instead. It somehow feels more organic. Emotions

of higher frequency are larger than those that occur rarely. The YFD trackers are all mod-

ular at these early stages of development, but I do plan to eventually integrate all trackers

as if YFD were a dashboard into a user’s life. The feelings tracker will be in the center of it

all. In the end, everything we do is driven by how we feel or how we want to feel.

The Point
Data visualization is often all about analytics and technical results, but it does not have to

be—especially with personal data collection. People who collect data about themselves are

not necessarily after the actual data. They are mostly interested in the resulting informa-

tion and how they can use their own data to improve themselves. For that to come

through, people have to see more than just data in the visualization. They have to see

themselves. Life is complex, data represents life, and users want to understand that com-

plexity somehow. That does not mean we should dumb down the data or the information.

Instead, we use the data visualization to teach and to draw interest. Once there is that

interest, we can provide users with a way to dig deeper and explore their data, or more

accurately, explore and understand their lives in that data. It is up to the statistician, com-

puter scientist, and designer to tell the stories properly.

F I G U R E 1 - 6 . Users can also keep track of how they feel. Unlike the other YFD trackers, the page of emotions does not

have any charts or graphs. A word cloud was chosen to provide more organic-feeling visualization.

S E E I N G Y O U R L I F E I N D A T A 15

How to Participate
PEIR and YFD are currently by invitation only, but if you would like to participate, please

feel free to visit our sites at http://peir.cens.ucla.edu or http://your.flowingdata.com, respec-

tively. Also, if you are interested in collaborating with the PEIR research group to incorpo-

rate new models, strategies, or visualization, or if you have ideas on how to improve YFD,

we would love to hear from you.

http://peir.cens.ucla.edu
http://your.flowingdata.com

17

Chapter 2 C H A P T E R T W O

The Beautiful People: Keeping Users in
Mind When Designing Data Collection

Methods
Jonathan Follett and Matthew Holm

Introduction: User Empathy Is the New Black
ALWAYS KEEP THE WANTS AND NEEDS OF YOUR AUDIENCE IN MIND. THIS PRINCIPLE, WHICH GUIDES THE FIELD

known as user experience (UX) design, seems painfully obvious—enough to elicit a roll of the

eyes from any professional creating new, innovative digital technologies or improving upon

already existing systems. “Yes! Of course there’s a person using the product!”

But, while the benefits of following a user-centered design process can be great—like

increased product usability and customer satisfaction, and reduced 800-number service

calls—this deceptively simple advice is not always followed, especially when it comes to

collecting data.

What Is UX?

UX is an emerging, multidisciplinary field focused on designing products and services that

people can easily understand and use. Its primary concern is making systems adapt to and

serve the user, rather than the other way around. (See Figure 2-1.) UX professionals can

include practitioners and researchers in visual design, interaction design, information

architecture, user interface design, and usability. And the field, which is strongly related to

human factors and computer-human interaction, draws upon ethnography and psychol-

ogy as well: UX professionals operate as user advocates. Generally, UX design techniques

18 C H A P T E R T W O

are applied to desktop and web-distributed software, although proponents may use the

term more broadly to describe the design of any complex experience—such as that of a

museum exhibit or retail store visit.

The Benefits of Applying UX Best Practices to Data Collection

When it comes to data collection, user experience design is more important than ever.

Data—that most valuable digital resource—comes from people and their actions, so

designers and developers need to be constantly thinking about those people, and not just

about the data they want to collect. The key method for collecting data from people online

is, of course, through the use of the dreaded form. There is no artifact potentially more

valuable to a business, or more boring and tedious to a participant.

As user experience practitioners, we regularly work with data collected from large audi-

ences through the use of web forms. And we’ve seen, time and again, that the elegant

visual design of forms can assist greatly in the collection of data from people. The chal-

lenge presented by any form design project is that, although it’s easy enough to collect

data from people, it can be exceptionally difficult to collect good data. Form design matters

(see Figure 2-1), and can directly affect the quality of the data that you receive: better-

designed forms gather more accurate and more relevant data.

So, what is it that drives people to fill in forms and create the data we need? And how can

we, as designers and developers, encourage them to do it more efficiently, effectively, and

accurately?

F I G U R E 2 - 1 . Rather than treating audience needs as an afterthought, the UX design process addresses audience needs,

business requirements, and technical feasibility during the design stage.

Digital product development is often driven by
business or technology concerns

UX design integrates the end user into the process

Business rules
and objectives

Business rules
and objectives

Technology

Technology
Build

Build

Digital product

User needs
and motivations

User needs
and motivations

$

$

Digital product

T H E B E A U T I F U L P E O P L E 19

We’ll take a look at a case study here, showing an example of simple form design using UX

best practices and principles to increase the completion rate of unsolicited questionnaires.

The Project: Surveying Customers About a New Luxury Product
Our project was an online survey for a marketing consulting firm, Urban Wallace Associ-

ates, that was trying to gauge consumer interest in a new luxury product. (To maintain

confidentiality, we’ve had to change some of the details throughout this chapter relating

to the content of the survey questions.) The survey audience was the same demographic as

the product’s eventual retail audience: wealthy individuals between the ages of 55 and 75.

An email survey was not our client’s first choice. Urban Wallace Associates had already

attempted a telephone survey of the target group. “Normally, we get about 35% answer-

ing machines,” says UWA President, Roger Urban. “In this group, we got more than 80%

answering machines. When someone did pick up, it was usually the housekeeper!”

Unable to get a satisfactory sample of the target audience on the phone, our client turned

to email. One of the reasons our client chose this communication method is because, for

this affluent group, email is a near-universal utility. And while email faces its own set of

gatekeepers—namely, automated junk mail filters—very few people, as of yet, hire others

to read it for them. Even the wealthy still open their own emails.

Urban Wallace Associates secured an email marketing firm to help generate and prequalify

the recipient list, and to deliver and track the outgoing messages. Our firm was brought in

to design and build the survey landing page, which would open in the recipient’s web

browser when he clicked a link in the body of the email, and to collect the results into a

database. Our primary focus in this task was maintaining an inviting atmosphere on the

questionnaire web page, so that respondents would be more willing to complete the form.

A secondary task was creating a simple interface for the client so that he could review live

reporting results as the data came in.

Specific Challenges to Data Collection
Data collection poses specific challenges, including accessibility, trust, and user motivation.

The following sections discuss how these issues affected our design.

Challenges of Accessibility

Advocates of web accessibility—designing so that pages and sites are still useful for people

with special needs and disabilities—often say that designing a site that is accessible will

also create a site that is more usable for everyone. This was not just a theoretical consider-

ation in our case, since, with a target audience whose members were approaching or past

retirement, age-related vision impairment was a real concern. Some 72% of Americans

report vision impairment by the time they are 45 years of age.

20 C H A P T E R T W O

The other side of the age issue—one rarely spoken of, for fears of appearing discrimina-

tory—is that older people use computers and the Internet in fewer numbers and with less

ease than younger people who grew up with computers in their lives. (Individuals with

higher incomes generally use computers and the Internet more, however, so those age-

related effects were mitigated in our sample group.) Respondents who are stymied by a

confusingly designed survey are less likely to give accurate information—or, indeed, to

complete the survey at all. In our case, as in all such projects, it pays to recall that essential

adage: know your audience.

Challenges of Perception

While accessibility is a functional issue—a respondent cannot complete a survey if she

can’t read it—our project faced other challenges that were more emotional in nature, and

depended on how the respondent perceived the questioner and the questions.

Building trust

Internet users are well aware that giving out information to people online can have seri-

ous consequences, ranging from increased spamming, phone solicitation, and junk mail all

the way up to fraud and identity theft. Therefore, for those looking to do market research

online, building trust is an important factor. Although the response to the product and our

survey was ultimately quite positive overall (as we’ll describe in more detail later on),

there were several participants who, when asked why they were not interested in the

product, responded with statements such as:

“Don’t trust your firm”

“Unknown Offeror”

“Don’t believe what [the product] claims to deliver”

“can’t afford it...don’t trust it...too good to be true so it probably isn’t. PLEASE DO

NOT CONTACT ME ABOUT THIS PRODUCT ANY MORE”

These responses illustrate the lengths to which we must go in order to build trust online. It

was more important, in our case, because we were explicitly not selling anything—we

were conducting research. “I don’t want anything that sounds like a sales lead,” our client,

Roger Urban, told us at the outset. It would be necessary to provide clear links back to

information about Urban Wallace Associates, so people could see what kind of firm was

asking them questions, and to post clear verbiage that we were not collecting their per-

sonal data, and that we were not going to contact them again. The only wrinkle was that

our client’s research required knowing the U.S. state in which each respondent was living.

So we would have to figure out a way to capture that information without violating the

spirit of the trust we were trying to build.

Length of survey

Keeping the respondent from disengaging was one of our biggest concerns. The client and

we agreed early on to keep the survey to a single screen. Multiple screens would not only

require more patience from the respondent, but they might require additional action

T H E B E A U T I F U L P E O P L E 21

(such as clicking a “go on to the next question” button). Any time a survey requires an

action from the respondent, you’re inviting him to decide that the extra effort is not worth

it, and to give up. Further, we wanted to avoid intimidating the respondent at any point

with the perceived length of the survey. Multiple screens, or the appearance of too many

questions on a single screen, increase the likelihood that a respondent will bail out.

Accurate data collection

One particularly important problem we considered during the design stage of this survey

was that the data we collected needed to be as accurate as possible—perhaps an obvious

statement, but difficult nonetheless. Our form design had to elicit responses from the par-

ticipants that were honest, and not influenced by, say, a subconscious desire to please the

questioner (a common pitfall for research of this type). The difference between collecting

opinion data and information that might be more administrative in nature, such as an

address for shipping, is that shipping data can be easily validated, whereas opinion data,

which is already subjective, has a way of being more slippery. And although the science of

designing opinion polls and measuring the resulting data is not something we’ll cover in

depth in this chapter, we will discuss some of the language and other choices our team

made to encourage accurate answers.

Motivation

Finally, although we’ve talked about concerns over how to make it possible for respon-

dents to use the form, as well as the problems of getting them to trust us enough to keep

participating, avoiding scaring them off with a lot of questions, and making sure we didn’t

subconsciously influence their answers, we haven’t mentioned perhaps the most impor-

tant part of any survey: why should the person want to participate at all? For this type of

research survey, there is no profit motive to participate, unlike online forums such as

Amazon’s Mechanical Turk, in which users complete tasks in their spare time for a few

dollars or cents per task. But when there is no explicit profit to be made, how do you convince a

person to take the time to answer your questions?

Designing Our Solution
We’ve talked about some of the pitfalls inherent in a data-collecting project; in the next

few sections, we discuss the nuts and bolts of our design, including typography, web

browser compatibility, and dynamic form elements.

Design Philosophy

When we design to elicit a response, framing the problem from a user’s perspective is crit-

ical. It’s easy to get caught up in the technical constraints of a project and design for the

computer, rather than the person using it. But form data is actively generated by a person

(as opposed to being passively generated by a sensor or other input), and requires the par-

ticipant to make decisions about how and whether to answer your questions. So, the way

in which we collect a participant’s data matters a great deal.

22 C H A P T E R T W O

As we designed the web form for this project, we focused on balancing the motivations of

survey participants with the business objectives of the client. The client’s primary business

goal—to gather data determining whether the target audience would be interested in pur-

chasing a new luxury product—was in line with a user-centered design perspective. By

placing the person in the central role of being both advisor and potential future customer,

the business objectives provided strong justification for our user-centered design decisions.

Here are a couple of guidelines we used to frame our design decisions:

Respect the user

Making our design people-centered throughout the process required thinking about

our users’ emotional responses. In order to convince them to participate, we had to first

show them respect. They’re not idiots; they’re our potential customers. We all know

this instinctively, but it’s surprising how easily we can forget the principle. If we

approach our users with respect, we’ll naturally want the digital product we build for

them to be accessible, usable, and easily understood. This perspective influences the

choices we make for everything from language to layout to technology.

Make the person real

In projects with rapid timelines or constrained budgets, we don’t always have the

resources to sculpt a complete user profile or persona based on target market research,

or to observe users in their work environments. In these situations, a simple “guerilla”

UX technique to create empathy for the user and guide design decisions is to think of a

real person we know in the demographic, whom we’d legitimately like to help. We had

several such stand-in personas to guide our thinking, including our aging parents and

some former business mentors whom we know very well. Of course, imagining these

people using our digital product is only a first step. Since we knew them well, we were

also able to enlist some of them to help in preliminary testing of our design.

In the end, people will adapt their own behavior to work with just about any design, if they

have to. The purpose of UX is to optimize those designs so people will want to use a product

or service, and can use it more readily and easily, without having to adapt their behavior.

Designing the Form Layout

Generally, no matter how beautiful our form design, it’s unlikely that it will ever rise to

the level of delighting users. There is no designers’ holy grail that can make people enthu-

siastic about filling out a form. However, form aesthetics do matter: clear information and

visual design can mitigate users’ boredom by clearly guiding their eyes and encouraging

them to make it to the end, rather than abandoning the task halfway through. Good form

design doesn’t draw attention to itself and should be nearly invisible, always honoring its

primary purpose, which is to collect accurate information from people. While form design

needs to be both pleasing and professional in tone, in most cases, proper visual treatment

will seem reserved and utilitarian in comparison to most other kinds of web pages. Form

visual design can only be judged by how effectively it enables users to complete the task.

For this project, the areas where we focused our design efforts were in the typography,

page layout, and interaction design.

T H E B E A U T I F U L P E O P L E 23

Web form typography and accessibility

In general, older readers have difficulty seeing small type. And survey participants are not

so generous that they’re willing to strain their eyes to read a form. Because the target

audience for our survey project was older (55–75 years of age), we knew that overall legi-

bility would be an issue.

We chose the sans serif typeface Arial (a close cousin via Microsoft of the modern work-

horse Helvetica), which is standard-issue on nearly 100% of web browsers, and we set

headers and body copy large at 20 pixels and 14 pixels, respectively. Although larger type

caused the page to be slightly longer, the improvements in legibility were well worth it.

Line spacing was not too tight, and was left-justified with a rag right. Line length was

roughly 85 characters. And we set the majority of the text with the high contrast combi-

nation of black type on a white background, also for legibility considerations. While we

did use color strategically to brighten the page and emphasize the main headers, we did

not rely on it to provide any additional information to the user. We did this because, for

the male audience, roughly 7–8% has some type of color blindness.

Giving them some space

A densely designed form with no breathing room is guaranteed to intimidate the user. So,

leaving some open whitespace in a layout is key.

In our survey, the first section included a text description of the luxury product, which we

asked participants to read and evaluate. Web readers are notorious for their short atten-

tion spans and tendency to skim text rather than read it all the way through. So, following

web writing best practices, we separated the 250-word product description into subsec-

tions with headers, pulling out key bullet points and dividing it into easily digestible

chunks (see Figure 2-2).

F I G U R E 2 - 2 . Designing for legibility. (See Color Plate 5.)

For legibility,
headers were
set in Arial
at 20 px

Body copy
was also set in
Arial at 14 px.

Bullet points help break
up the text into easily
readable chunks.

Whitespace is always
appreciated and makes
the page seem lighter
and less oppressive.

24 C H A P T E R T W O

Accommodating different browsers and testing for compatibility

To make sure the form was usable by our audience, we designed the form page so it could be

viewed easily in a variety of screen sizes, from an 800-pixel width on up. To accomplish this,

we centered the form in the browser, using a neutral gray background on the right and left

margins to fill the remaining space of widescreen monitors and ensure that the form

wouldn’t appear to be disembodied and floating. We also tested in all major web browsers,

including the legacy IE6, to ensure that the dynamic form looked good and functioned well.

Interaction design considerations: Dynamic form length

Dynamic forms can “soften the blow” of having many questions to answer. Using Java-

Script or other methods can create a soft reveal that allows the form to be subtly altered—

or lengthened—based on user input (see Figures 2-3 and 2-4). These techniques allowed

us to balance not scaring users off with a form that is too long on the one hand, and not

infuriating them because they had been “deceived” about the form length on the other.

F I G U R E 2 - 3 . The survey starts with only three questions. (See Color Plate 6.)

T H E B E A U T I F U L P E O P L E 25

For our project, the readers, in effect, built the survey as they answered each question. We

used a very simple piece of JavaScript code to make sure each new question was condi-

tional upon an answer to previous questions. The idea for this solution came from another

website we were working on at the time. In that project—a portfolio site for a designer—

we used JavaScript to hide and reveal details about different projects, making it possible to

take in all of the designer’s work at a glance and then dive deeper into areas of interest, all

F I G U R E 2 - 4 . The survey may expand to up to six questions depending on user input. (See Color Plate 7.)

26 C H A P T E R T W O

without leaving the home page. This idea—not overwhelming the user with too much

information, yet making that information quickly accessible at the same time—was on our

minds when we approached the survey design. Here is the code we used:

<script language="JavaScript">
//This finds the word "Yes" in an input value and displays the designated hiddenElement
(or hides it if "Yes" is not found)
function switchem(switchElement,hiddenElement) {
if (switchElement.value.search("Yes") > -1)
 document.getElementById(hiddenElement).style.display = '';
else
 document.getElementById(hiddenElement).style.display = 'none';
}
</script>

<script language="JavaScript">
//This finds the word "No" in an input value and displays the designated hiddenElement
(or hides it if "No" is not found)
function switchem2(switchElement,hiddenElement) {
if (switchElement.value.search("No") > -1)
 document.getElementById(hiddenElement).style.display = '';
else
 document.getElementById(hiddenElement).style.display = 'none';
}
</script>

...

<li id="survey1" class="surveynum">How interested would you be to purchase this kind of
product?
 <p>Would you say that you:</p>
 <ul class="nobullet">
 <input
onclick="switchem(this,'survey2');switchem2(this,'survey3');document.
getElementById('surveytextarea').value=''" type="radio" name="q1" value="Yes,
Definitely would purchase"> Definitely would purchase
 <input
onclick="switchem(this,'survey2');switchem2(this,'survey3');document.
getElementById('surveytextarea').value=''" type="radio" name="q1" value="Yes, Probably
would purchase"> Probably would purchase
 <input
onclick="switchem(this,'survey2');switchem2(this,'survey3');document.
getElementById('surveytextarea').value=''" type="radio" name="q1" value="Yes, Might or
might not purchase"> Might or might not purchase
 <input
onclick="switchem(this,'survey2');switchem2(this,'survey3');document.
getElementById('q2a').checked=false;document.getElementById('q2b').
checked=false;document.getElementById('q2c').checked=false;document.
getElementById('q2d').checked=false;document.getElementById('q2e').
checked=false;;document.getElementById('q2f').checked=false;
document.getElementById('q2g').checked=false" type="radio" name="q1" value="No,
Probably would not purchase"> Probably would not purchase

T H E B E A U T I F U L P E O P L E 27

 <input
onclick="switchem(this,'survey2');switchem2(this,'survey3');document.
getElementById('q2a').checked=false;document.getElementById('q2b').
checked=false;document.getElementById('q2c').checked=false;document.
getElementById('q2d').checked=false;document.getElementById('q2e').
checked=false;;document.getElementById('q2f').checked=false;
document.getElementById('q2g').checked=false" type="radio" name="q1" value="No,
Definitely would not purchase"> Definitely would not purchase

<li id="survey2" style="display:none" class="surveynum">Which of the following are
extremely important to you?
 <p>(Check up to 3 responses)</p>
 <ul class="nobullet">

<input type="checkbox" name="q2" id="q2a" value="The price of the product">
The price of the product
 <input type="checkbox" name="q2" id="q2b" value="The product's
lifetime guarantee"> The product's lifetime guarantee
 <input type="checkbox" name="q2" id="q2c" value="The quality of
the craftsmanship"> The quality of the craftsmanship
 <input type="checkbox" name="q2" id="q2d" value="The fact that it can be
customized to my taste"> The fact that it can be customized to my taste
 <input type="checkbox" name="q2" id="q2e" value="The prestige of
owning the product"> The prestige of owning the product
 <input type="checkbox" name="q2" id="q2f" value="The safety features"> The
safety features
 <input type="checkbox" name="q2" id="q2g" value="The on-call customer
service guarantee"> The on-call customer service guarantee

<li id="survey3" style="display:none" class="surveynum">Why are you not interested in
this product?
 <ul class="nobullet">
 <textarea id="surveytextarea" name="q3"></textarea>

The result is that selecting any of the three positive responses on the 5-point scale in Ques-

tion 1 revealed a checklist that helped further identify what the respondent liked about

the product (Figure 2-5). Selecting either of the two negative responses revealed a text

area in which the respondent could explain, precisely, what he disliked about the product

(Figure 2-6).

As programming goes, this is child’s play and hardly worth mentioning. But the impact

from the user’s standpoint is subtle and powerful. It meant that we could “listen” and

“respond” to the user’s input in a very conversational manner. It also meant that the

psychological impact of the form length is much lower, as users are facing only a three-

question survey at the start. The survey potentially could expand to six questions, but all

of this happens without the user ever leaving the survey landing page, and without forc-

ing the user to actively click some sort of “Next page” button.

28 C H A P T E R T W O

Designing trust

We did some concrete things to try to establish trust with the respondents and indicate

that this was a legitimate survey, not a phishing expedition. First, we prominently dis-

played the client’s company logo at the top of the web survey page. The logo itself linked

back to the “About Us” area on Urban Wallace Associates’ main website, so survey partici-

pants could see who they were communicating with. Additionally, we hosted the survey

page on a subdomain of our client’s main site, not on some third-party host.

As previously mentioned, our client’s research needed the U.S. state of residence of each

respondent. But, since we told respondents, “we do not collect any personally identifiable

information about you,” it would have been awkward to then start asking questions about

where the person lived. Our solution was to record the visitor’s IP address automatically,

which would satisfy the U.S. state location requirement but not violate the respondent’s

privacy. After all, a user’s IP data is logged anytime he or she visits any website, and, at

F I G U R E 2 - 5 . Detail of survey when the user answers “Yes” to Question 1. (See Color Plate 8.)

F I G U R E 2 - 6 . Detail of survey when the user answers “No” to Question 1. (See Color Plate 9.)

T H E B E A U T I F U L P E O P L E 29

most, it can only be used to determine the city of that otherwise anonymous user’s Inter-

net Service Provider.

We then purchased an inexpensive data set of IP-to-State information. With it, we were

able to match each IP address collected with the U.S. state in which it resided. Although

we could have scripted our pages to access this database and match the numbers at the

time of data collection, we chose to do the matching semi-automatically after the fact. For

starters, the project budget and timeframe did not warrant purchasing the additional

server power to handle the task. But more important, from a user perspective, was the

delay this matching would have inevitably built into the survey completion process.

Although it might have been more convenient for us to receive finalized data at once, it

would have created an additional inconvenience for our user. When designing a data col-

lection experience, it’s important to think about what server tasks must take place during

the survey in order for the user’s needs to be met, and what tasks can be delayed until after

data collection. Don’t ask the user to do what you can do—or discover—on your own.

All of this leads us back to the central point of this chapter, which is also the final, and

core, aspect of building trust: treat the respondent with respect. By demonstrating that

you value the respondent and her time and intelligence, by interacting with her in a con-

versational manner (despite the fact that all survey questions are being delivered by a pre-

programmed machine), and showing her that you’ve been “listening” to her answers

(don’t, for example, ask slight variations of the same question over and over again, which

makes it seem as though you didn’t pay attention to her original response), you’ll increase

trust, encourage real answers, and keep the respondent from disengaging.

Designing for accurate data collection

This sort of talk can seem a little touchy-feely at times, especially to people who only work

with the hard numbers retrieved from data collection, and not the human beings who

generated that data. But all of this user-centered focus is not just a matter of politeness—

it’s also crucial for the reliability of the data that we actually get. “For a survey like this,”

says Roger Urban, whose firm specializes in measuring market interest and customer satis-

faction through face-to-face, mailed, telephone, and email surveys just like this, “you’re

dealing with extremely thin data sets, so the quality of that data is really important.” In

other words, when important decisions are being based on the answers given by only a

few hundred people, those answers had better be great.

But great answers do not mean positive answers. After all, this is research, and just like sci-

entists, we want to measure reality (Do customers care about price that much when it

comes to this product? Is safety really their top concern, or not? Are they, in fact, happy

with our service?), to see where our assumptions are wrong. “Techniques of persuasion

are a disaster when it comes to research,” says Roger Urban. People will, subconsciously,

try to please researchers by answering in the way that they feel they are supposed to answer.

Introducing persuasive techniques, whether implicit or explicit, will skew your research data.

“If you want an artificially high positive,” says Urban, “I can get it for you every time.” But if

you’re making real business or policy decisions, what good is such data?

30 C H A P T E R T W O

Motivation

You can’t use persuasive techniques during the act of data collection, but you do need to

persuade your respondents to participate in the first place. With no money involved, what

is their motivation?

“There should always be some benefit,” says Roger Urban, “even if that benefit is just

’voicing your opinion.’” Human beings are interesting creatures; where cold, hard cash

may not be able to compel us, far more nebulous benefits may do the trick—for example,

some well-placed flattery. We all like to be thought of as experts; validation that our opin-

ion is important may be enough to convince us to spend time talking to a stranger. So, too,

can the allure that we may be receiving “inside information” by participating, that we are

glimpsing what the future holds. For example, what techie wouldn’t be interested in par-

ticipating in a survey that allowed us to glimpse the design of Apple’s next i-gadget?

In our project’s case, we knew that we were dealing with an older audience. The language

in the initial email was important in terms of engaging the recipient, and our team went

with an appeal to the respondent’s expertise. In our first mailing, we tested two different

headlines on equal-sized groups of recipients:

“You can shape the face of [product information removed] for future generations.”

“We’re seeking the voice of experience.”

As it turned out, the first headline, though offering the respondent the power to steer the

very direction of the future, apparently proved slightly more ephemeral and altruistic

(after all, it implies that the benefit may be solely for future generations, not necessarily

for the respondent) than the ego-stroking one that turns their age into a positive (“experi-

ence”). For the first headline, 12.90% of those who opened the email clicked through, and

16.22% of those completed the survey. For the second headline, 14.04% of those who

opened the email clicked through, with 29.5% of those people completing the survey.

When the second mailing was conducted two weeks later, with the “voice of experience”

headline on all messages, it generated a click-through rate of 27.68% and a completion

rate of 33.16%. This second email went to people on the list who did not open the first

mailing. (One of the secrets of email surveys is that the second mailing to the same list

generally receives just as many responses as the first.)

This is another aspect of UX philosophy that’s worth remembering: test everything. In this

case, test even your testing methods! When you have the time and resources, test different

copy, test different layouts, and test different types of interaction design—all with actual

users.

Reporting the live data results

In our project, one special consideration was that the recipient of the final data, the client,

would also be a user of the system—with drastically different needs from those of the sur-

vey participants.

T H E B E A U T I F U L P E O P L E 31

Because the project was time sensitive, the client needed to see the survey results quickly

to determine whether the product was generally well received. For this use case scenario,

our solution was an HTML page, accessible to the client, which displayed the data, crudely

sorted with minimal formatting. The live, raw survey results were sorted first by mailing

(two mailings of each headline were sent to two age segments—55 to 64 and 65 to 75) and

then by people’s Yes/No answers to the first question about their interest in the product.

Unlike the survey participants, who needed to be convinced to participate and encouraged

to complete the form, the client was motivated by a desire to see the data as quickly as it

was generated. For the client, speed and immediate access to the live results as they came

in were more important than any other factors. Thus, his user experience reflected those

priorities (see Figure 2-7).

The raw data display was not, of course, the final deliverable. Upon the project conclusion

we presented the client with fully sortable Excel spreadsheets of all the data we had col-

lected (from eight total mailings, sent in two batches), including the U.S. state data that

had not yet been generated at the time of the survey.

Results and Reflection
In the end, was all of this effort worth it? It’s just a web form, right? People fill out mil-

lions of these things every day. Some might think that we don’t need to put any more

thought into how to design one—that the “problem” of creating a usable web form has

already been solved, once and for all. But you should never underestimate the lack of

effort that has been given to solving the most common design problems, particularly online.

Most forms today are not much different than the ones that rolled out in the early 1990s.

F I G U R E 2 - 7 . On this live data reporting screen, the client was able to see the survey results as they came in.

32 C H A P T E R T W O

Moreover, if there’s one thing a good designer, especially one following UX principles,

should know, it’s that there is no such thing as a one-size-fits-all solution. Customization

for your user group will almost always improve the experience—and, in this type of exer-

cise, your data collection.

The results in our client’s case appear to have been well worth the effort. We learned that,

for this email marketing company’s previous campaigns, normal rates of opened emails

were in the 1–2% range; our mailing hit 4%. The normal click-through rate was 5–7% of

opened emails; ours reached 21%. Most relevant, the normal rate of those who click

through to the web page and then take action (i.e., complete the form) is usually 2–5%;

for our design, that completion rate was 29%. (See Figure 2-8.)

There are, of course, other possible reasons why this survey performed so much better

than this company’s previous mailings. It’s possible that the product was simply far more

compelling than other products or topics on which the company had conducted surveys,

and that the excitement generated by this product carried more people through to the

end. It’s also possible that the recipient pre-screening was far more accurate than usual,

and this group was particularly well fitted to the product. There may even be an age bias at

work—are older computer users more likely to open emails, read them, click through, and

complete surveys than younger users, who may be more savvy and cautious about unso-

licited emails? We’re not aware of any studies on the subject, but it is a possibility. Indeed,

although we can’t rule out any of these explanations completely, the email company does

F I G U R E 2 - 8 . The response rates for our survey were significantly higher than the norm, which could be attributed to a

better overall user experience.

40

30

20

10

0
Open

Normal response rates
Our survery responses

Click through Take action

Pe
rc

en
t

T H E B E A U T I F U L P E O P L E 33

not appear to have been doing anything differently for our survey than it does for the

hundreds of other surveys it regularly sends out. It’s probably safe to conclude that our

form design had something to do with the project’s success.

Oh, and although it has no relevance to the survey design, we thought you might be inter-

ested to know that the reception of the product itself was extremely positive. While our

client tells us that the product would have been viable to launch with a 10% positive

response rate (answering “Yes” to the first survey question), it turned out that more than

16% of the respondents were interested in potentially buying it. What is the product?

Unfortunately, confidentiality agreements preclude us from saying anything more about it.

If you want a glimpse, you’ll just have to hope you’re part of the next email survey. Don’t

be so quick to throw those emails in the trash; at the very least, you might learn some-

thing new about good—or bad—form design.

35

Chapter 3 C H A P T E R T H R E E

Embedded Image Data Processing
on Mars

J. M. Hughes

Abstract
SPACECRAFT ARE UNIQUE ENGINEERING PROJECTS, WITH CONSTRAINTS AND REQUIREMENTS NOT

found in earth-bound artifacts. They must be able to endure harsh temperature extremes,

the hard vacuum of space, and intense radiation, and still be lightweight enough for a

rocket to loft them into space and send them to their destination. A spacecraft is an exer-

cise in applied minimalism: just enough to do the job and no more. Everything that goes

into the design is examined in terms of necessity, weight, and cost, and everything is

tested, and then tested again, before launch day, including the embedded computer sys-

tem that is the “brains” of the spacecraft and the software that runs on it. This chapter is

an overview of how the image processing software on the Phoenix lander acquired and

stored image data, processed the data, and finally sent the images back to Earth.

Introduction
When designing and programming an embedded system, one is faced with a variety of

constraints. These include processor speed, execution deadlines, allowable interrupt

latency, and memory constraints, among others. With a space mission, the constraints can

be severe. Typically the computer onboard a space vehicle will have only enough expensive

36 C H A P T E R T H R E E

radiation-hardened memory to fulfill the mission objectives. Its central processing unit

(CPU) will typically be a custom-made device designed to withstand the damaging effects

of high-energy cosmic rays. By commercial standards, the CPU isn’t fast, which is typical

of radiation-hardened electronics. The trade-off here is speed versus the ability to take a

direct hit from an interstellar particle and keep on running. The dual-core CPU in a typical

PC, for example, wouldn’t last long in space (nor would much of the rest of the PC’s elec-

tronics, for that matter).

Then there are the science objectives, which in turn drive the software requirements for

functionality and performance. All must be reconciled within the confines of the space-

craft’s computing environment, and after numerous trade-off decisions, the final product

must be able to operate without fatal errors for the duration of the mission. In the case of

a robotic spacecraft, any fault may be the end of the mission, so there are requirements for

getting things right before the rockets light up and everything heads off into the wild blue

yonder.

On May 25, 2008, the Phoenix Mars Lander touched down safely in the northern polar

region of Mars. Figure 3-1 shows an artist’s impression of what Phoenix might look like

after landing. Unlike the rovers that moved about in the relatively warm regions near the

Martian equator, Phoenix was a stationary lander sitting in a barren, frigid landscape where

the atmospheric pressure is equivalent to being at an altitude of about 100,000 feet on

Earth. The thin atmosphere on Mars is also mostly carbon dioxide. Not exactly an ideal

vacation spot, but a good place to look for ancient frozen water.

F I G U R E 3 - 1 . Artist’s impression of Phoenix on Mars (Image credit: NASA/JPL). (See Color Plate 10.)

E M B E D D E D I M A G E D A T A P R O C E S S I N G O N M A R S 37

The lander’s mission was to look for direct evidence of water, presumably in the form of

ice just below the surface (it found it, by the way), and possibly for indications that Mars

could have once provided a habitat suitable for life. Because of the location of its landing

site, the spacecraft had a limited lifespan; when the Martian winter set in, it would almost

certainly be the end of Phoenix. At the high latitude of the landing site, the odds of the

lander surviving a totally dark, frigid (–90˚ C or colder) winter under a blanket of carbon

dioxide snow would be very, very slim, at best.

I was the principle software engineer for the imaging software on Phoenix, and in this

chapter I will attempt to share with you some of the thinking that went into the various

data-handling design decisions for the imaging flight software for the Phoenix Mars Lander.

In JPL/NASA jargon it is called the “imaging flight software” because it was responsible for

handling all the imaging chores on the surface of Mars, and it was qualified as “flight soft-

ware” for the mission.

With the Phoenix Mars Lander, the challenge was to capture and process data from any of

four different charge-coupled device (CCD) imagers (similar to what’s in a common digital

camera) simultaneously, and do it all in a very limited amount of pre-allocated memory in

the spacecraft’s main computer. Not only that, but the images might also need to be com-

pressed prior to transmission back to Earth using one or more of several different com-

pression methods. Just for good measure, some of the final data products (that is, the

images) had to be chopped up into small segments, each with its own sequentially num-

bered header, to allow for efficient storage in the spacecraft’s flash memory and reduce the

amount of lost data should something happen to a packet during its journey from Mars to

Earth. The resulting embedded code acquired and processed over 25,000 images during

the operational lifetime of the Phoenix lander.

Some Background
But before we delve into the data handling, it would be a good idea to briefly introduce

the main actors in the drama: the imagers (also referred to as the cameras) and the space-

craft’s computer.

The primary computer on Phoenix was built around a RAD6000 CPU running at a maximum

clock rate of 20 MHz, although it could also be operated at slower clock rates to conserve

battery power. No cutting-edge technology here; this was basically a radiation-hardened,

first-generation PowerPC with a mix of RAM and flash memory all crammed onto a set of

VME circuit boards. After dealing with the landing chores, its primary functions involved

handling communications with Earth (uplink and downlink in jargon-speak; see the side-

bar “Uplink and Downlink” on page 38), monitoring the spacecraft’s health, and coordi-

nating the activities of the various science instruments via commands sent up from the

ground. It used WindRiver’s VxWorks real-time operating system (RTOS) with numerous

extensions provided by the spacecraft contractor, Lockheed Martin. All of the flight software

was written in C in accordance with a set of specific coding rules.

38 C H A P T E R T H R E E

Phoenix carried three primary cameras for surface science imaging: the Stereo Surface

Imager (or SSI, with two CCDs), the Robotic Arm Camera (the RAC, with a single CCD),

and the MECA Optical Microscope (OM) camera (again, a single CCD identical to the one

used in the RAC). Figure 3-2 shows the flight model of the SSI, and Figure 3-3 shows the

RAC attached to the robotic arm. The OM was tucked away inside the enclosure of the

MECA instrument, which itself resembled a black box mounted on the upper deck surface

of the lander.

The challenge was to devise a way to download the image data from each of the cameras,

store the data in a pre-allocated memory location, process the data to remove known pixel

defects, crop and/or scale the images, perform any commanded compression, and then

slice-and-dice it all up into packets for hand-off to the main computer’s downlink man-

ager task for transmission back to Earth.

Each 1,024 × 1,024 pixel CCD in the SSI was capable of generating 2 megabytes of data, or

1 megapixel of 12-bit pixel values. Because it was a true stereo camera, the imagers in the

SSI were often referred to as “eyes.” Plus, it did look a bit like an old-fashioned robot’s

UPLINK AND DOWNLINK
In the jargon of space missions, the terms uplink and downlink refer to the transfer of data or com-
mands to and from controllers on Earth to a spacecraft. Uplink refers to commands or data transferred
to the spacecraft. Downlink occurs when the spacecraft sends data back to Earth.

Like many things in life, it’s almost never a straightforward matter of pointing an antenna on the roof
at the spacecraft and pressing the “Push To Talk” button. Commands or data to be uplinked must first
pass through a review, and perhaps even some simulations, to make sure that everything is correct.
Then, the commands and data are passed to mission controllers who will schedule when the uplink
occurs (or is “radiated,” in space-speak). And finally, it goes into NASA’s Deep Space Network (DSN)
communications system and gets radiated out into space. But that wasn’t the final step, because in the
case of Phoenix it had to be relayed by one of the orbiters now circling Mars, since Phoenix did not
have the ability to talk to Earth directly. When the orbiter rose over the horizon on Mars, Phoenix

would listen for any new uplink data.

Downlink was just as convoluted. Again, the orbiter would act as a relay, receiving the data from Phoe-

nix and then passing it on to one of NASA’s DSN antennas back on Earth. Then, it would make its way
through various processing and relay steps until finally arriving at JPL. If it was image data, then the
Mission Image Processing Laboratory (MIPL) at JPL would reassemble the images and make them
available to the science teams eagerly awaiting the pictures at the science operations center at the
University of Arizona.

E M B E D D E D I M A G E D A T A P R O C E S S I N G O N M A R S 39

head. The RAC and OM cameras each contained a single 512 × 256 pixel CCD imager, and

each generated 131,072 pixel values (or 262,144 bytes) of data (from now on I’ll refer to

both as the RAC/OM, because from the imaging software’s point of view, they were iden-

tical imagers). Only 12 bits were actually used for each pixel worth of data from the CCD

imagers, and what to do with the remaining 4 unused bits in a standard 16-bit “word” of

memory generated some interesting discussions during the design phase, which I’ll

address in the next section. All of the images generated by SSI, RAC, and OM were mono-

chrome, not color. Color was synthesized during processing back on Earth using separate

images taken with either filters or special illumination.

I should note here that while the imaging software controlled the OM CCD to acquire

images, it had nothing to do with the control of the MECA instrument and the electro-

mechanical control of the optical microscope itself. That was handled by a separate real-

time task written by the MECA team at JPL.

F I G U R E 3 - 2 . The Stereo Surface Imager (Image credit: University of Arizona/NASA/JPL). (See Color Plate 11.)

40 C H A P T E R T H R E E

Although 1 megapixel doesn’t sound like much by the standards of today’s consumer dig-

ital cameras, the CCD imagers used on Phoenix were custom-made for science imaging.

Each CCD in the cameras cost tens of thousands of dollars, and only a limited number

were ever made. They were reliable, robust, and precise, and each individual CCD was

exhaustively tested and characterized pixel-by-pixel for sensitivity, noise, and defects,

among other things. It is this level of characterization, and the reference data it generates,

that sets a scientific CCD apart from the devices used in consumer cameras. Accurate char-

acterization is what allows a researcher to have a high level of confidence that the image

data accurately represents the scene that the camera captured. It is also a major contribu-

tor to the cost.

To Pack or Not to Pack
As with any highly constrained embedded system, the software needed to meet both its

operational requirements and the constraints of its execution environment. As one might

expect, these were not always complementary conditions, so trade-off decisions had to be

made along the way. Both the SSI and the RAC/OM cameras utilized 12-bit conversion for

the pixel data, which led to the first major trade-off decision: data packing. For a general

high-level overview of binary data, see the sidebar “Binary Data” on page 41.

During the early design phase of the mission, the notion of packing the 12-bit pixel data

came up and generated some interesting discussions. Given that only a limited amount of

memory was available for image data storage, the concept of packing the 12-bit pixel data

F I G U R E 3 - 3 . The Robotic Arm Camera (Image credit: University of Arizona/Max Planck/NASA/JPL).

E M B E D D E D I M A G E D A T A P R O C E S S I N G O N M A R S 41

into 16-bit memory space was appealing. By packing, I’m referring to storing the 12-bit

pixel data contiguously, without any “wasted” bits in between—in effect ignoring 16-bit

memory boundaries. But more efficient data storage came at the cost of increased process-

ing time (unpacking, shifting, repacking). A digital image is an array (whether it’s treated

as a 1-D array or a 2-D array depends on what is being done to it), so any operation on an

image involved handling the image data utilizing one or more algorithmic loops working

through the array. The amount of data we were planning to push through the RAD6000

was significant, and even at the full-out clock rate of 20 MHz it was going to be painfully

slow, so every CPU cycle counted.

In the end it was decided to “waste” a bit of memory and store each 12-bit pixel in a 16-bit

memory location to keep things simple and avoid using any more CPU time than neces-

sary. This decision was also driven by the desire, established early on, to avoid the use of

multiple large processing buffers or result arrays by doing all image processing and com-

pression in-place. Data packing would have made this rather challenging, and the result-

ing code would have been overly complex and could have shot down the whole in-place

processing concept we wanted to implement.

BINARY DATA
Data is information. In computer systems it is represented numerically, since that it what the CPU in
a computer deals with. Data can represent text, wherein each character has a unique numeric value,
or it can represent images by encoding each pixel, or picture element, in an image with a numeric
value representing its intensity, its color, or a combination of both characteristics. Given an appropri-
ate numerical encoding scheme, a computer can process any type of data one might care to imagine,
including audio, electrical potentials, text, images, or even the set of characteristics that define the
differences between dogs and cats. But no matter what it represents, to the computer it’s all just num-
bers. We supply the rules for how it will be encoded, processed, displayed, and interpreted.

Data also comes in a variety of sizes, depending on what it represents. For example, a window or door
switch in a burglar alarm system needs only a single bit (or binary digit) to represent its two possible
states: open or closed, 0 or 1. To represent a character in the English alphabet and punctuation, one
needs about 100 numbers or so, each represented by 8 bits of data. Modern computers work in base
2, so 8 bits could represent any number from 0 to 255 (110010002 = 20010, for example). In many com-
puters there are preferred sizes for values expressed in base 2, typically in multiples of either 8 or 16
bits. In a 16- or 32-bit CPU, like the one used on Phoenix, memory can be efficiently accessed in
“words” of 16 bits. Trying to access fewer bits than this (such as 8 bits) may actually be inefficient, so
data that is greater than 8 bits in size but less than 16 bits is often stored in a 16-bit memory location
along with some unused bits. This is how the image data on Phoenix was handled, because the elec-
tronics for the CCD imagers produced 12-bit-per-pixel data, but the spacecraft’s memory was orga-
nized as either 16- or 32-bit storage locations.

42 C H A P T E R T H R E E

The Three Tasks
In the VxWorks RTOS environment used for Phoenix, there really isn’t anything that is

synonymous to what a typical computer user might think of as individual programs. Noth-

ing is loaded from a disk (there are no disks), and everything the computer will ever do is

loaded into memory when the system first starts. It’s actually all just one big program

with a lot of smaller subprograms running more or less at the same time. These smaller

subprogram activities are referred to as tasks, or threads, and they execute based on the

availability of resources such as timed events or I/O (input/output) devices, and their

assigned priority in the greater scheme of things (high-priority tasks get the chance to run

more often than low-priority activities).

It was obvious from the outset that a minimum of two tasks would be needed for the sur-

face image processing, one for each of the cameras. The SSI and RAC/OM were very dif-

ferent beasts, with different command sets and different operating characteristics. The SSI

used all new controller hardware and incorporated CCD imagers identical to those used on

the Mars Rovers. The RAC and OM imagers were originally built by the Max Planck Insti-

tute in Germany, and had been around for a while (one of the original designs was flown

on the Huygens probe that landed on Titan). The RAC/OM controller hardware was actu-

ally a flight spare unit from the ill-fated Mars ‘98 mission, which apparently met a tragic

end when its descent engines shut off prematurely a few hundred feet above the surface of

Mars. But the data from each camera still needed to be processed, compressed, and then

downlinked, and these operations weren’t dependent on the physical data source. The

image data was all 12 bits per pixel, and all that really varied was the geometry (height

and width), and consequently how much image data would need to be handled.

Although there was a desire on the part of the spacecraft integration team (Lockheed Mar-

tin) to try to keep the number of science instrument tasks to a minimum, it became obvi-

ous early on that it didn’t make much sense to duplicate the same image compression and

downlink functions in both camera tasks. This would be wasteful in terms of limited pro-

gram storage space, and it would effectively double the effort necessary to make changes

in the code and then verify those changes. Consequently, a decision was made to use

three tasks: one task would handle the SSI, one would deal with the RAC and OM cam-

eras (one or the other, but not both at the same time, because the interface hardware

wouldn’t allow it), and a third would act as a shared resource to perform image compres-

sion and downlink processing using the data generated by the two camera control tasks,

and it would run asynchronously. So while the SSI and RAC/OM tasks interfaced with the

control electronics to acquire image data, control the internal temperature of the cameras,

and perform motion control, the third task would do nothing but image data processing

and downlink.

The image processing task was called the ICS, which stood for Image Compression Sub-

System, although it ended up doing more than just compressing image data. A block dia-

gram of the three tasks and the communications among them is shown in Figure 3-4.

E M B E D D E D I M A G E D A T A P R O C E S S I N G O N M A R S 43

The decision to use three tasks did increase the level of complexity in the system, but it

also reduced the amount of program storage space required. As an added bonus, having a

third independent task made it much easier to make a change to a particular ICS process-

ing function, and then test the functionality with data from either of the imaging tasks

using real camera hardware or from a simulated image data source. This turned out to be

a boon when doing extensive compression testing later on in the project, when over

15,000 test images were processed back-to-back through the ICS to verify its operation

using an automated test setup.

The ICS also included two source modules, which contained shared functions for static

memory management (known as the “slot manager”) and image manipulation (decima-

tion, subframing, pixel defect correction, and so on). These were not actually part of the

ICS task, but rather served as thread-safe pseudolibraries to support the two camera con-

trol tasks and the ICS task. The reality was that there really wasn’t any other convenient

place to put this code, given the architecture constraints imposed on the instrument soft-

ware, so it ended up with the ICS.

Slotting the Images
I mentioned earlier that the amount of memory available to each of the various instru-

ment tasks was limited, but just how limited may be surprising to some, given that it is now

commonplace to find 500 megabytes or even a gigabyte (or more) in a desktop PC. The ini-

tial memory allocation to both the SSI and RAC/OM tasks for image data storage was 230K

short of a full 10 megabytes (10,255,360 bytes, to be exact). There was discussion of

F I G U R E 3 - 4 . Imaging flight software tasks.

Spacecraft
flight

software

Downlink
handler

Commands

Commands

Image
data

Image
data

RAC/OM
task

Commands

Intertask
messages

Intertask
messages

Downlink
data

ICS
task

Image
slots

Slot
manager

RAC

OM

SSI
task SSI

44 C H A P T E R T H R E E

increasing this after the spacecraft landed, which meant that any memory management

scheme had to be flexible, but this was the design baseline. The default storage scheme

needed to be able to handle at least four SSI images (or two pairs, consisting of one image

for each “eye”) and at least four RAC/OM images, all in the same memory space. The odd

size meant that it wouldn’t be possible to squeeze in more than four full-size SSI images,

at least not initially.

In embedded systems, the use of dynamic memory allocation is usually considered to be a

Really Bad Idea. To avoid issues with fragmented memory, memory leaks, null pointers,

mystery crashes, and the possibility of losing the mission completely, the use of dynamic

memory allocation (C’s malloc function and its kin) was forbidden by the flight software cod-

ing rules. This meant that the imaging software had to manage the image data itself within

whatever amount of memory was assigned to it, and it had to be robust and reliable.

The solution was the use of a set of functions that acted as a memory manager for the pre-

allocated memory assigned to the ICS at boot-time. The memory manager was the key

component of the image data processing. To prevent collisions, blocking semaphores were

used to control shared access by each of the three imaging tasks (actually, any task in the

spacecraft software could have used the shared memory, but only the cameras did so).

The static memory allocation was divided up into “slots,” which could be either large

enough to hold a full-size SSI image, or a smaller size for RAC/OM images. Figure 3-5

shows the default organization of the ICS image storage space.

This is only one possible configuration, and the number of each type of slot could be

changed on the fly via commands uplinked from Earth.

F I G U R E 3 - 5 . Default image slot assignments.

Unallocated

SSI

SSI

SSI

SSI

Memory
(in
megabytes)

Default configuration:
4 SSI size slots (2 MB each)
4 RAC/OM size slots (.25 MB each)

RAC/OM
slots

10

9

8

7

6

5

4

3

2

1

0

E M B E D D E D I M A G E D A T A P R O C E S S I N G O N M A R S 45

Each image also had an associated structure containing header data. The image header

recorded things such as a code defining the camera that generated the image, the exposure

time, the image processing options selected, the image dimensions, optical filters that may

have been used, and how the image was compressed (if compression was used). Part of

the header was filled in by the instrument task that generated the image, and the remain-

der was filled in by the ICS prior to sending the image data to the spacecraft downlink

handler. Because the header data was not image data per se, it was stored in a separate set

of slots until it was time to do the downlink operation. Each image slot and its associated

header data had to be tracked and processed in tandem.

The memory manager was basically just a set of functions that operated on a set of arrays

of structures, as shown in Figure 3-6. The current state of the memory slots was main-

tained by the arrays, which, in essence, constituted a dynamic model of the physical mem-

ory space and its contents.

One of the arrays contained structures for image data, one per image slot. The C typedef

for the structure is:

typedef struct {
 uint16_t slot_status; /**< Owned or unowned */
 int16_t slot_owner; /**< -1 if slot is unowned */
 int16_t slot_size; /**< either RAC/OM or SSI sized */
 uint16_t *slot_address; /**< address of data space of slot */
} ics_img_slot_entry_t;

F I G U R E 3 - 6 . Memory slot manager arrays.

Image data

Image data
slots array

Image slot ID
and address

Header data

Header data
slots array

Head slot ID
and address

46 C H A P T E R T H R E E

The second array contained structures pointing to header data entries, and its definition is:

typedef struct {
 uint16_t slot_status; /**< Owned or unowned */
 int16_t slot_owner; /**< -1 if unowned */
 int16_t img_id; /**< associated image data slot number */
 uint16_t hdr_data[ICS_HDR_SLOT_SZ]; /**< array for header data */
} ics_hdr_slot_entry_t;

Notice that the header structure contains an entry for the image ID. This was essential,

since slots could be allocated and released in any order, and there was no guarantee that

the index of an image slot entry would be the same index for its associated header slot.

Rather than rely on the index offset into the arrays always being in sync, the image ID was

used to bind image and header data entries together.

The ability to dynamically reconfigure the image slot assignments allowed the memory

manager to be tailored to specific mission activities. If the plan for a particular day on Mars

(or a Sol, as it was called) involved imaging with the SSI, then one could configure the

slots to minimize the number of RAC/MECA size allocations, which was the default con-

figuration. If, on the other hand, the plan involved a lot of RAC or OM images, the mem-

ory could be configured to handle no SSI images and up to 39 of the smaller image sizes.

Passing the Image: Communication Among the Three Tasks
Image data fresh from one of the cameras was written into a slot by one of the camera

tasks. After performing any required pixel correction or subframe operations, the camera

task notified the ICS that a new image was available for processing. The ICS would then

perform any commanded compression (either lossy or lossless) in place on the image

within its slot, and then package and hand off the data for downlink. Only after the down-

link was complete would the slot be released and become available for a new image. The

sequence of events from exposure to image hand-off for the SSI camera is shown in

Figure 3-7.

The entire sequence of events shown in Figure 3-6 was contingent on the availability of

an image slot. If a slot was not available, the camera task would wait for a configurable

period of time to allow the ICS to finish compressing and downlinking an image, which

would result in a slot becoming available. If the ICS didn’t release a slot within that period

of time, the instrument task would generate an error message for the operators back on

Earth and drop the image on the floor (there really wasn’t any place else to drop it).

Once one of the camera instrument tasks obtained a slot, it “owned” that slot until it was

handed off to the ICS, which then became the owner. Ownership verification was based

on the slot ID (its number) assigned by the slot manager when the slot was initially allo-

cated, an image ID code, and the camera instrument task ID. When a hand-off was made

to the ICS, it verified that the ID codes presented matched those already recorded for that

particular image slot.

E M B E D D E D I M A G E D A T A P R O C E S S I N G O N M A R S 47

As mentioned earlier, the ICS ran asynchronously and was not tightly bound to either of

the camera tasks. It was able to do this by leveraging the built-in message queue system in

VxWorks, and through the use of the shared functions in the memory slot manager.

Figure 3-8 shows a message sequence chart (MSC) type of representation of the steps

involved along the way in getting data from a camera to finally sending it to downlink.

The use of the internal message queue (the S/C FSW process line, which stands for space-

craft flight software) allowed either camera task to issue a command to the ICS using the

same mechanism as the commands uplinked from Earth. The command would sit in the

queue until the ICS was done with its current activity. The cameras could continue to

acquire images as long as there were slots available to store the image data, and the ICS

would retrieve and process the data in turn until the queue was empty, without regard for

what the cameras might be doing.

Note that Figure 3-8 doesn’t show the error checking that went on during imaging activi-

ties. All in all, the number of lines of code dedicated to error checking and fault handling

was roughly equal to the lines of code that actually processed or otherwise handled the

data. Failure Mode, Effects, and Criticality Analysis (FMECA) techniques were employed

early in the design life cycle and provided guidance during the implementation of the soft-

ware and its fault-handling capabilities.

F I G U R E 3 - 7 . Image acquisition and hand-off sequence.

Obtain image slot

SSI

Expose image

Command

Acquire image
(download from camera)
Store image in image slot

Process image:
Pixel corrections

Subframe extraction
Decimation

In-place processing

Hand off image to ICS
Ready to acquire next image

1

2

3

4

5

48 C H A P T E R T H R E E

The ICS serialized the data stream, but the use of the image slots and the command mes-

sage queue allowed sets of images to be acquired in rapid (relatively speaking) succession.

It also meant that there was some timing margin available for image acquisition that

reduced the chances of operations being suspended while waiting for an image to be

downlinked. Early test command sequences demonstrated that it was possible to do things

like creating short “movies” (well, sort of, since it took about six seconds to download each

image from one of the SSI cameras), or generate a large (30+ images) data set using the

RAC or OM at different focal lengths.

Getting the Picture: Image Download and Processing
A lot went on between the time an image exposure occurred and the eventual hand-off to

the ICS. Each camera in the system had its own control electronics to process com-

mands, convert the analog signals from a CCD into 12-bit digital values, and then store

the data in a hardware buffer until the flight software could download it into an image slot.

F I G U R E 3 - 8 . MSC representation of image acquisition, processing, and downlink activities.

Camera task

Get camera
command

Request slot

Get slot address

Acquire image

Process image

Send message
to ICS

Get new
message

Request slot
address

Get slot address

Compress image

Downlink image

Release slot

Slot manager
S/C FSW

message queue ICS

E M B E D D E D I M A G E D A T A P R O C E S S I N G O N M A R S 49

All this occurred under the control of logic embedded in radiation-hardened programma-

ble gate array devices.

Once an image was acquired from a camera and written into an image slot, it was sub-

jected to various forms of processing, all of which occurred in-place within the confines of

an image slot. No additional large (image-sized) buffers were used for the processing or

the results thereof, and only a few small buffers were necessary to hold intermediate

results. The use of in-place processing was a key factor in the design of the imaging soft-

ware, and allowed the three tasks to maintain a small memory footprint in the overall sys-

tem. Figure 3-9 shows a comparison between a multiple-buffer approach and the single

buffer (i.e., slot) in-place design used for the Phoenix imaging flight software.

This was another design trade-off that was made early on in order to meet the image pro-

cessing requirements and still stay within the amount of memory allocated to the cameras.

Although it did meet the memory requirements, the downside was that there would be no

“undo” operation. As shown in Figure 3-10, if an error occurred during image processing,

either the entire image would be lost or a partially garbled image might be returned.

F I G U R E 3 - 9 . Multiple data buffers versus a single data buffer.

F I G U R E 3 - 1 0 . In-place data processing.

Camera

Image data

Camera
Raw image

data
Image

processing
functions

Image
processing
functions

Processed image
data

Process
dataRead

data
Write
data

Processed
data

Raw image
 data

50 C H A P T E R T H R E E

The processing algorithms walked through the data in an image slot, reading, processing,

and then writing the data back. Some of the algorithms, such as pixel corrections, didn’t

change the geometry of the image but instead simply modified a single pixel value based

on an uplinked table of known “bad” pixels (a pixel might be bad because it is not as sen-

sitive as its neighbors, or it might be too sensitive). In the environment of space, it was

expected that the odd cosmic ray could possibly blast through a pixel on a CCD and render

it defective. Other operations, such as subframing, extracted a region from the original

image, wrote it back into the slot, and adjusted the height and width parameters accord-

ingly. Decimation employed a mathematical averaging technique to reduce image size by

processing pixels in groups of 4, 9, or 16 to generate a single result pixel. The resulting

images were reduced by 1/2, 1/3, or 1/4 in size, respectively, while minimizing the “stair-

step” effect often seen with images that have been reduced using a subsampling technique

wherein every 2nd, 3rd, or 4th pixel is retained and the rest discarded. This operation also

wrote the modified data back into the image slot and adjusted the geometry parameters

accordingly.

After an imaging task had completed the commanded processing, it would then send a

message to the ICS (as described previously) and move on to the next command in the

message queue. If an image slot was available, this could result in acquiring yet another

image.

Image Compression
Just as the data produced by a robotic mission is precious, so is the communications band-

width needed to return that data. For smaller images, such as those reduced by subframe

or decimation operations, it could be acceptable to just downlink the image without com-

pression. Larger images, such as the full-size SSI images, would consume a lot of downlink

bandwidth, so compression was always considered as an option in such cases.

The ICS provided two forms of compression and two forms of size reduction using pixel

mapping and scaling. Which type of compression or reduction would be used for a partic-

ular image depended largely on the level of image fidelity deemed necessary for the object

of interest. In some cases, 8 bits per pixel would suffice; in other cases, the loss of fidelity

inherent with JPEG compression was acceptable; and for the cases where the image had to

retain as much fidelity as possible, there was a lossless compression method available.

In the ICS, a JPEG compressor, using all integer math and in-place operations, provided

so-called “lossy” compression. JPEG is considered lossy because it discards some of the

image data as a result of the compression process. It could compress image data to varying

degrees by command. The final code was loosely based on the JPEG compressor flown on

the Mars ’98 mission, although only a part of that original code survived in the ICS for

Phoenix. The original JPEG compressor used floating-point math, multiple full-size image

arrays as buffers, and dynamic memory allocation. How that ever managed to make it into

flight software is still a mystery to me, but it did. The use of floating-point values to represent

E M B E D D E D I M A G E D A T A P R O C E S S I N G O N M A R S 51

pixel data in the compression code also meant that it consumed four times as much mem-

ory per image as the native 16-bit integer representation of the original image.

A second form of compression, known as Rice Lossless or just Rice compression, used an

algorithm developed by Robert Rice of the Jet Propulsion Laboratory. The Rice algorithm

could compress image data by almost 2:1 with no data loss, whereas the JPEG algorithm

discarded data during the compression. The Rice compression also operated on the image

in-place in the image slot.

The two noncompression reduction methods used either a lookup table to map 12-bit

pixel values to 8-bit values, or a bit reduction method that shifted the pixel data right by 4

bits to yield an 8-bit-per-pixel image. Both the JPEG and Rice compression functions

would accept either 12- or 8-bit image data.

The decision to use the lossy JPEG compression or not typically came down to weighing

various factors such as how accurate the data needed to be, how much bandwidth would

be available, how much downlink storage was available in the spacecraft’s main com-

puter, and how much time was available to perform the compression (recall that the

RAD6000 had a top speed of 20 MHz, so compressing a megapixel of image data could

take over a minute).

When using the JPEG compression, the amount of compression to be applied was deter-

mined by a command parameter that specified the worst-case reduction ratio for the final

data. In other words, instead of specifying a “quality” factor (which is typically how one

tells a JPEG compressor how hard to work on an image), the ICS used a scaling factor and

worked out the required compression level on its own. This was based on a quick-look

analysis of the overall image entropy. The image entropy was an estimate of how “busy”

the image was, and images with a higher level of entropy (lots of details and changes in

brightness, such as a pebble-strewn patch of ground with sharp shadows) would require a

higher compression setting to meet the final size goal. Images with low entropy, such as

the Martian sky with a few clouds drifting by, wouldn’t have a whole lot going on, and so

would require a lesser amount of compression to meet the size target.

The scaling factor for JPEG compression was also used to divide the original image into

segments. These segments were then fed into the JPEG compressor one at a time, and the

output was written back into the image slot. The final result in the image slot prior to

downlink was a set of small, self-contained JPEG images, the total size of which was equal

to or less than the commanded size reduction ratio for the original image.

The Rice compressor included its own embedded method of segmentation, and it was

downlinked by simply reading out the compressed data in the form of small packets sized

to fit neatly into the flash memory in the spacecraft’s main computer. The output of the

lookup table and bit-reduction methods was also simply read out in flash-sized packets for

downlink.

52 C H A P T E R T H R E E

Downlink, or, It’s All Downhill from Here
The last step in the process was the hand-off to the downlink manager in the spacecraft

flight software. Some science instruments could simply pass their data to downlink and be

done with it, but because of the large amount of data and the use of packetization, the ICS

ended up doing a lot of downlink preprocessing on its own.

For the JPEG data, this meant handling each of the compressed segments individually. The

first and last segments in a sequence always included a full-sized image data header. The

intermediate segments got a smaller form of the header data, which included an image ID

code and a sequence number. As each segment was read from the image slot, the header

data was applied. The use of a sliding window form of readout allowed the segments to be

packed end-to-end while assembling a flash-sized packet. This in turn allowed the down-

link handler to maximize the use of the temporary flash storage space, because some of

the compressed segments could be smaller than others if the part of the image correspond-

ing to a segment had a low entropy. In fact, it was common to see compressed segment

sizes vary widely, so packing them end-to-end avoided wasting any of the on-board flash

memory.

Because the data consisted of uniquely identified segments, the loss of a downlink packet

wouldn’t consign the entire image to the garbage. The reconstruction and decompression

software back on the ground at JPL could figure out what segments were missing and sim-

ply fill in the missing part of the image with black zero-value pixel data. If the missing data

showed up later (which was possible, considering the rather torturous route the data took

on its way down), then it could be placed into the image to fill in the missing pixels.

Once the data was passed to the downlink handler, the ICS was done, and it would release

the image data slot. The entire process—from image exposure to completion of downlink

hand-off—took between 3 to 10 minutes, depending on the CPU speed and what other

additional imaging activities where slated to occur, such as auto-exposure and sun-finding

(which are complex topics in their own right, so I haven’t discussed them here).

Conclusion
The instrument software did much more than just take pictures and process image data. It

also managed motion control with three degrees of freedom for the SSI, and the focus and

viewport cover motors in the RAC. The RAC also supported multiple banks of red, blue,

and green LEDs to illuminate whatever might be in the robotic arm scoop and create color

images. Both the SSI and the RAC incorporated active thermal control, achieved either

through the use of special heaters or by intentionally stalling a stepper motor to achieve

self-heating. On top of all this, there was the error-checking and fault-recovery code. All

in all, it was very busy software.

E M B E D D E D I M A G E D A T A P R O C E S S I N G O N M A R S 53

If I had it to do all over again, I suppose the main thing I would want to see changed

would be that the cameras use their own embedded processors rather than rely on the

spacecraft CPU. This would have made things much easier all around for everyone. Apart

from that, I always felt that there was too much crammed into each of the instrument tasks.

In other words, the thermal control should have been a separate task for each camera. This

would have greatly reduced the complexity of each of the tasks, albeit at the expense of

increasing the overall complexity of the intertask communications. At the outset, how-

ever, there wasn’t enough evidence to build a compelling case for this, so the design was

already firm (not really frozen, just very inflexible) by the time some new thermal

requirements popped up that needed to be accommodated.

And, finally, I really had issues with the method chosen for performing a “heartbeat”

check. I didn’t know going in that the command message queue was going to be used for

this purpose. What this did was impose a requirement on the instrument tasks to be able

to drop whatever they were doing in order to check the command message queue on a

regular basis for a “ping” message. I believe that a much better approach would have been

for the instrument to register a callback function with the spacecraft flight software that

could be used to check the value of a continuously updated counter variable on an asyn-

chronous basis. If the value didn’t change after some amount of time, the instrument task

was probably hung. There was indeed a rather big squabble over this, but in the end the

ping message was used simply because that’s what had always been done and that’s what

the existing test systems were designed to handle. So even though the system wasn’t

designed to deal with tasks that could take minutes to process large amounts of image

data, it wasn’t going to be changed.

The Phoenix SSI and RAC/OM imaging software was a lot of work to design, implement,

and test, and in the end it did what it was supposed to do for the entire life of the mission.

Figure 3-11 is one of the first images (SS001EDN896308958_10D28R1M1) returned from

the SSI on Sol 1, the spacecraft’s first full day on Mars.

F I G U R E 3 - 1 1 . Image returned from the SSI on Sol I (Image credit: NASA/JPL/University of Arizona).

54 C H A P T E R T H R E E

LEARNING MORE ABOUT PHOENIX
If you would like to know about the Phoenix mission, these are the primary places to start:

• Phoenix website at the University of Arizona: http://phoenix.lpl.arizona.edu

• Phoenix website at the Jet Propulsion Laboratory: http://www.jpl.nasa.gov/news/phoenix/

main.php

• NASA’s Phoenix website: http://www.nasa.gov/mission_pages/phoenix/main/index.html

At JPL, the MIPL folks do a lot of image processing for a variety of missions. You can learn more about
what they do here:

• JPL’s Mission Image Processing Laboratory: http://www-mipl.jpl.nasa.gov/

And if you would like to learn more about the RAD6000 CPU, image processing, or embedded sys-
tems, be sure to check out Wikipedia at http://www.wikipedia.org.

http://phoenix.lpl.arizona.edu
http://www.jpl.nasa.gov/news/phoenix/main.php
http://www.jpl.nasa.gov/news/phoenix/main.php
http://www.nasa.gov/mission_pages/phoenix/main/index.html
http://www-mipl.jpl.nasa.gov/
http://www.wikipedia.org

55

Chapter 4 C H A P T E R F O U R

Cloud Storage Design in a PNUTShell
Brian F. Cooper, Raghu Ramakrishnan, and Utkarsh Srivastava

Introduction
YAHOO! RUNS SOME OF THE WORLD’S MOST POPULAR WEBSITES, AND EVERY MONTH OVER HALF A BILLION

people visit those sites. These websites are powered by database infrastructures that store

user profiles, photos, restaurant reviews, blog posts, and a remarkable array of other kinds

of data. Yahoo! has developed and deployed mature, stable database architectures to sup-

port its sites, and to provide low-latency access to data so that pages load quickly.

Unfortunately, these systems suffer from some important limitations. First, adding system

capacity is often difficult, requiring months of planning and data reorganization, and

impacting the quality of service experienced by applications during the transition. Some

systems have a hard upper limit on the scale they can support, even if sufficient hardware

were to be added. Second, many systems were designed a long time ago, with a single

datacenter in mind. Since then, Yahoo! has grown to a global brand with a large user base

spread all over the world. To provide these users with a good experience, we have to rep-

licate data to be close to them so that their pages load quickly. Since the database systems

did not provide global replication as a built-in feature, applications had to build it them-

selves, resulting in complex application logic and brittle infrastructure. Because of all the

effort required to deploy a large-scale, geographically replicated database architecture, it

was hard to quickly roll out new applications or new features of existing applications that

depended on that architecture.

56 C H A P T E R F O U R

PNUTS is a system that aims to support Yahoo!’s websites and application platforms and

address these limitations (Cooper et al. 2008). It is designed to be operated as a storage

cloud that efficiently handles mixed read and write workloads from tenant applications

and supports global data replication natively. Like many other distributed systems, PNUTS

achieves high performance and scalability by horizontally partitioning the data across an

array of storage servers. Complex analysis or decision-support workloads are not our

focus. Our system makes two properties first-class features, baked in from the start:

Scale-out

Data is partitioned across servers, and adding capacity is as easy as adding new servers.

The system smoothly transfers load to the new servers.

Geo-replication

Data is automatically replicated around the world. Once the developer tells the system

at which colos* to replicate the data, the system takes care of the details of making it

happen, including the details of handling failures (of machines, links, and even entire

colos).

We also set several other goals for the system. In particular, we want application develop-

ers to be able to focus on the logic of their application, not on the nuts and bolts of operat-

ing the database. So we decided to make the database hosted, and to provide a simple,

clean API to allow a developer to store and access data without having to tune a large

number of parameters. Because the system is to be hosted, we wanted to make it as self-

maintainable as possible.

While all of these goals are important to us, building a database system that could both

scale-out and globally replicate data was the most compelling and immediate value propo-

sition for the company. And as we began to design the system, it became clear that this

required us to rethink many well-understood and long-used mechanisms in database sys-

tems (Ramakrishnan and Gehrke 2002).

The key idea we use to achieve both scale-out and geo-replication is to carry out only sim-

ple, cheap operations synchronously, and to do all the expensive heavy lifting asynchro-

nously in the background. For example, when a user in California is trying to tag a photo

with a keyword, she definitely does not want to wait for the system to commit that tag to

the Singapore replica of the tag database (the network latency from California to Sin-

gapore can be as high as a second). However, she still wants her friend in Singapore to be

able to see the tag, so the Singapore replica must be updated asynchronously in the back-

ground, quickly (in seconds or less) and reliably.

As another example of how we leverage asynchrony, consider queries such as aggrega-

tions and joins that typically require examining data on many different servers. As we

scale out, the probability that some of these servers are slow or down increases, thereby

adversely affecting request latency. To remedy this problem, we can maintain materialized

* Colocation facility, or data center. Yahoo! operates a large number of these, spread across the world.

C L O U D S T O R A G E D E S I G N I N A P N U T S H E L L 57

views that reorganize the base data so that (a predetermined set of) complex queries can

be answered by accessing a single server. Similar to database replicas, updating each view

synchronously would be prohibitively slow on writes. Hence, our approach is to update

views asynchronously.

In the rest of this chapter, we explore the implications of focusing on scale-out and geo-

replication as first-class features. We illustrate the main issues with an example, explain

our basic approach, and discuss several issues and extensions. We then compare PNUTS

with alternative approaches. Our discussion concentrates on the design philosophy, rather

than the details of system architecture or implementation, and covers some features that

are not in the current production version of the system in order to highlight the choices

made in the overall approach.

Updating Data
As users interact with websites, their actions constantly result in database updates. The

first challenge we examine is how to support this massive stream of updates while provid-

ing good performance and consistency for each update.

The Challenge

Imagine that we want to build a social networking site. Each user in our system will have

a profile record, listing the user’s name, hobbies, and so on. A user “Alice” might have

friends all over the world who want to view her profile, and read requests must be served

with stringent low-latency requirements. For this, we must ensure that Alice’s profile

record (and similarly, everyone else’s) is globally replicated so those friends can access a

local copy of the profile. Now say that one feature of our social network is that users can

update their status by specifying free text. For example, Alice might change her status to

“Busy on the phone,” and then later change it to “Off the phone, anybody wanna chat?”

When Alice changes her status, we write it into her profile record so that her friends can

see it. The profile table might look like Table 4-1. Notice that to support evolving web

applications, we must allow for a flexible schema and sparse data; not every record will

have a value for every field, and adding new fields must be cheap.

How should we update her profile record? A standard database answer is to make the

update atomic by opening a transaction, writing all the replicas, and then closing the trans-

action by sending a commit message to all of the replicas. This approach, in line with the

T A B L E 4 - 1 . User profile table

Username FullName Location Status IM BlogID Photo …

Alice Alice Smith Sunnyvale, CA Off the phone, anybody
wanna chat?

Alice345 …

Bob Bob Jones Singapore Eating dinner 3411 me.jpg …

Charles Charles Adams New York, New York Sleeping 5539 …

…

58 C H A P T E R F O U R

standard ACID* model of database transactions, ensures that all replicas are properly

updated to a new status. Even non-ACID databases, such as Google’s BigTable (Chang et al.

2006), use a similar approach to synchronously update all copies of the data. Unfortu-

nately, this approach works very poorly if we have geo-replication. Once Alice enters her

status and clicks “OK,” she may potentially wait a long time for her response page to load,

as we wait for far-flung datacenters to commit the transaction. Moreover, to guarantee

true atomicity, we would have to exclusive-lock Alice’s status while the transaction is in

progress, which means that other users will potentially be unable to see her status for a

long time.

Because of the expense of atomic transactions in geographically separated replicas, many

web databases take a best-effort approach: the update is written to one copy and then asyn-

chronously propagated to the rest of the replicas. No locks are taken or validation per-

formed to simulate a transaction. As the name “best-effort” implies, this approach is

fraught with difficulty. Even if we can guarantee that the update is applied at all replicas,

we cannot guarantee that the database ends in a consistent state. Consider a situation

where Alice first updates her status to “Busy,” which results in a write to a colo on the

west coast of the U.S., as shown in Table 4-2.

She then updates her status to “Off the phone,” but due to a network disruption, her

update is directed to an east coast replica, as shown in Table 4-3.

Since update propagation is asynchronous, a possible sequence of events is as follows: “Off

the phone” is written at the east coast before the “Busy” update reaches the east coast.

Then, the propagated updates cross over the wire, as shown in Table 4-4.

* A transaction’s changes are Atomic, Consistent, Isolated from the effects of other concurrent trans-
actions, and Durable.

T A B L E 4 - 2 . An update has been applied to the west coast replica

West coast East coast

Username Status Username Status

Alice Busy Alice --

T A B L E 4 - 3 . A second update has been applied to the east coast replica

West coast East coast

Username Status Username Status

Alice Busy Alice Off the phone

C L O U D S T O R A G E D E S I G N I N A P N U T S H E L L 59

The “Busy” status overwrites the “Off the phone” status on the east coast, while the “Off

the phone” status overwrites the “Busy” status on the west coast, resulting in the state

shown in Table 4-5.

Depending on which replica her friends look at, Alice’s status will be different, and this

anomaly will persist until Alice changes her status again.

To deal with this problem, some web-scale data stores implement eventual consistency: while

anomalies like that described earlier may happen temporarily, eventually the database will

resolve inconsistency and ensure that all replicas have the same value. This approach is at

the heart of systems such as S3 in Amazon’s Web Services. Eventual consistency is often

achieved using techniques such as gossip and anti-entropy. Unfortunately, although the

database will eventually converge, it is difficult to predict which value it will converge to.

Since there is no global clock serializing all updates, the database cannot easily know if

Alice’s last status update was “Busy” or “Off the phone,” and thus may end up converging

the record to “Busy.” Just when Alice is ready to chat with her friends, all of them think

that she is busy, and this anomaly persists until Alice changes her status again.

Our Approach

We have struck a middle ground between strong consistency (such as ACID transactions)

with its scalability limitations, and weaker forms of consistency (such as best effort or

eventual consistency) with their anomalies. Our approach is timeline consistency: all rep-

licas will go through the same timeline of updates, and the order of updates is equivalent

to the order in which they were made to the database. This timeline is shown in

Figure 4-1. Thus, the database will converge to the same value at all replicas, and that

value will be the latest update made by the application.

T A B L E 4 - 4 . The two updates cross during propagation

West coast East coast

Username Status Username Status

Alice Busy Alice Off the phone

T A B L E 4 - 5 . Inconsistent replicas

West coast East coast

Username Status Username Status

Alice Off the phone Alice Busy

F I G U R E 4 - 1 . Timeline of updates to Alice’s status.

“Busy”

“Off the phone”

Status: none Status: busy Status: off the phone

Record timeline

60 C H A P T E R F O U R

Timeline consistency is implemented by having a master copy where all the updates are

made, with the changes later propagated to other copies asynchronously. This master copy

serializes the updates and ensures that each update is assigned a sequence number. The

order of sequence numbers is the order in which updates should be applied at all replicas,

even if there are transient failures or misorderings in the asynchronous propagation of

updates. We have chosen to have a master copy per record since many Yahoo! applica-

tions rely on a single table in which different records correspond to different users, each

with distinct usage patterns. It is possible, of course, to choose other granularities for mas-

tership, such as a master per partition (e.g., based on a key) of records.

Even in a single table, different records may have master copies located in different servers. In

our example, Alice, who lives on the west coast, has a record that is mastered there, whereas

her friend Bob, who lives in Singapore, has his record mastered in the Asian replica. The mas-

tership of the record is stored as a metadata field in the record itself, as shown in Table 4-6.

Of course, a master copy seems at odds with our principle that only cheap operations

should be done synchronously. If Alice travels to New York and updates her status from

there, she must wait for her update operation to be forwarded to the west coast, since her

profile record is mastered there; such high-latency cross-continental operations are what

we are trying to minimize. Such cross-colo writes do occur occasionally, because of shift-

ing usage patterns (e.g., Alice’s travel), but they are rare. We analyzed updates to Yahoo!’s

user database and found that 85% of the time, record updates were made to the colo con-

taining the master copy. Of course, Alice may move to the east coast or to Europe, and

then her writes will no longer be local, as the master copy for her record is still on the west

coast. Our system tracks where the updates for a record are originating, and moves mas-

tership to reflect such long-standing shifts in access patterns, in order to ensure that most

writes continue to be local. (We discuss mastership in more detail in the next section.)

When an application reads a record, it typically reads the local replica. Unless that replica

is marked as the master copy, it may be stale. The application knows that the record

instance is some consistent version from the timeline, but there is no way for the applica-

tion to know from the record itself whether it is the most recent version. If the application

absolutely must have the most recent version, we allow it to request an up-to-date read; this

request is forwarded to the master to get the latest copy of the record. An up-to-date read

is expensive, but the common case of reading the local (possibly stale) replica is cheap,

again in line with our design principles. Luckily, web applications are often tolerant of

stale data. If Alice updates her status and her friend Bob does not see the new status right

away, it is acceptable, as long as Bob sees the new status shortly thereafter.

T A B L E 4 - 6 . Profile table with mastership and version metadata

Username _MASTER _VERSION FullName …

Alice West 32 Alice Smith …

Bob Asia 18 Bob Jones …

Charles East 15 Charles Adams …

…

C L O U D S T O R A G E D E S I G N I N A P N U T S H E L L 61

Another kind of read that the application can perform is a critical read, to make sure that

data only moves forward in time from the user’s perspective. Consider a case where Alice

changes her avatar (a picture representing the user). Bob may look at Alice’s profile page

(resulting in a read from the database) and see the new avatar. Then, Bob may refresh the

page, and due to a network problem, be redirected to a replica that has not yet seen Alice’s

avatar update. The result is that Bob will see an older version of the data than the version

he just saw. To avoid these anomalies for applications that want to do so, the database

returns a version number along with the record for a read call. This version number can be

stored in Bob’s session state or in a cookie in his browser. If he refreshes Alice’s profile

page, the previously read version number can be sent along with his request, and the

database will ensure that a record that is no older than that version is returned. This may

require forwarding to the master copy. A read that specifies the version number is called a

“critical read,” and any replica with that version, or a newer version, is an acceptable

result. This technique is especially helpful for users that update and then read the data-

base. Consider Alice herself: after she updates her avatar, she will become confused if we

show her any page with her old avatar. Therefore, when she takes an action that updates

the database (like changing her avatar), the application can use the critical read mecha-

nism to ensure that we never show her older data.

We also support a test-and-set operation that makes a write conditional upon the read ver-

sion being the same as some previously seen version (whose version number is passed in

as a parameter to the test-and-set request). In terms of conventional database systems, this

provides a special case of ACID transactions, limited to a single record, using optimistic

concurrency control.

More on mastership

We employ various techniques to ensure that read and write operations go on smoothly

and with low latency, even in the presence of workload changes and failures.

For example, as we mentioned earlier, the system implements record-level mastership. If

too many writes to the record are originating from a data center other than the current

master, the mastership of the record is promptly transferred to that data center, and sub-

sequent writes are done locally there. Moreover, transferring mastership is a cheap opera-

tion and happens automatically, thereby allowing the system to adapt quickly to workload

changes.

We also implement a mechanism that allows reads and writes to continue without inter-

ruption, even during storage unit failures. When a storage unit fails, an override is issued

(manually or automatically) for that storage unit, signifying that another data center can

now accept writes on behalf of the failed storage unit (for records previously mastered at

the failed storage unit). We take steps (details omitted here) to ensure that this override is

properly sequenced with respect to the updates done at the failed storage unit. This is

done to guarantee that timeline consistency is still preserved when the other data center

starts accepting updates on behalf of the failed storage unit.

62 C H A P T E R F O U R

In PNUTS, all read and write requests go through a routing layer that directs them to the

appropriate copy (possibly the master) of the record. This level of indirection is a key to

how we provide uninterrupted system availability. Even when a storage unit has failed

and its data is recovered on to another storage unit, or record masters are moved to reflect

usage patterns, these changes are transparent to applications, which still continue to con-

nect to routers and enjoy uninterrupted system availability, with requests seamlessly

routed to the appropriate location.

Supporting ordered data

Our system is architected to support both hash-partitioned and range-partitioned data. We

call the hash version of our database YDHT, for Yahoo! Distributed Hash Table, and the

ordered version is called YDOT, for Yahoo! Distributed Ordered Table. Most of the system

is agnostic to how the data is organized. However, there is one important issue that is sen-

sitive to physical data organization. In particular, hash-organized data tends to spread load

out among servers very evenly. If data is ordered, portions of the key space that are more

popular will cause hotspots. For example, if status updates are ordered by time, the most

recent updates will be of most interest to users, and the server with the data partition at

the end of the time range will be the most loaded. We cannot allow hotspots to persist

without compromising system scale-out.

Logically ordered data is actually stored in partitions of physically contiguous records, but

with partitions arranged without regard to order, possibly across physical servers. We can

address the hotspot issue by moving partitions dynamically in response to load. If a few

hot partitions are on the same server, we can move them to servers that are less loaded.

Moreover, we can also dynamically split partitions, so that the load on a particularly hot

single partition can be divided amongst several servers.* This movement and splitting of

partitions across storage units is distinct from the mechanism mentioned previously for

changing the location of the master copy of a record: in this case, changing the record

master affects the latency of updates that originate at a server, but does not in general

reduce the cumulative read and write workload on a given partition of records. A particu-

lar special case that requires splitting and moving partitions is when we want to update or

insert a large number of records. In that case, if we are not careful we can create a sever

load imbalance by sending large batches of updates to the same few servers. Thus, it is

necessary to understand something about how the updates are distributed in the key

space, and if necessary, preemptively split and move partitions to prepare for the upcom-

ing onslaught of updates (Silberstein et al. 2008).

We insulate applications from the details of the physical data organization. For single record

reads and writes, the use of a routing layer shields applications from the effects of partition

movement and splitting. For range scans, we need to provide a further abstraction: imagine

* The observant reader may have noticed that if all updates affect the partition containing the end of
the time range, splitting this partition will not solve the problem, and some measure such as sorting
by a composite key, e.g., user and time, is required.

C L O U D S T O R A G E D E S I G N I N A P N U T S H E L L 63

that we want to scan all registered users whose age is between 21 and 30. Answering this

query may mean scanning a partition with several thousand records on one server, then a

second partition on another server, and so on. Each partition of several thousand records

can be scanned quickly, since they are sequentially ordered on disk. We do not want the

application to know that we might be moving or splitting partitions behind the scenes. A

good way to do this is to extend the iterator concept: when an application is scanning, we

return a group of records, and then allow the application to come back when it is ready to

ask for the next group. Thus, when the application has completed one batch and has asked

for more, we can switch them to a new storage server that has the partition with the next

group of records.

Trading off consistency for availability

Timeline consistency handles the common case efficiently and with clean semantics, but it

is not perfect. Occasionally, an entire datacenter will go down (e.g., if the power is cut) or

become unreachable (e.g., if the network cable is cut), and then any records mastered in

that datacenter will become unwriteable. This scenario exposes the known trade-off

between consistency, availability, and partition tolerance: only two of those three proper-

ties can be guaranteed at all times. Since our database is global, partitions will happen and

cannot cause an outage, and thus in reality we only have a choice between consistency

and availability. If a datacenter goes offline, possibly with some new updates that have not

yet been propagated to other replicas, we can either preserve consistency by disallowing

updates until the datacenter comes back, or we can preserve availability by violating time-

line consistency and allowing some updates to be applied to a nonmaster record.

Our system gives the application the ability to make this choice on a per-table basis. If the

application has chosen availability over consistency for a particular table, and a datacenter

goes offline, the system temporarily transfers mastership of any unreachable records in

that table. This decision effectively forks the timeline to favor availability. An example is

shown in Figure 4-2. After the lost colo is restored, the system automatically reconciles

any records that have had conflicting updates, and notifies the application of these con-

flicts. The reconciliation ensures that the database converges to the same value every-

where, even if the timeline is not preserved. On the other hand, if the application has

chosen consistency over availability, mastership is not transferred and the timeline is pre-

served, but some writes will fail.

F I G U R E 4 - 2 . The west datacenter is offline, so the update timeline forks.

Status: none Status: busy

Status: off the phone

West replica

East replica

Status: asleep Status: good
morning

64 C H A P T E R F O U R

For certain operations, this trade-off between consistency and availability can be easier to

manage. For example, imagine that an application wants to include polls, where users

vote on various questions (like “What is your favorite color?”) and the poll results are

stored as counters in our database. Counter operations (like increment) are commutative,

and can therefore be applied even to the nonmaster copy without breaking timeline con-

sistency. Normally our replication mechanism transfers the new version of the record

between replicas, but for commutative operations we would actually have to transmit the

operation (e.g., increment). Then, whenever the master received the operation (either

during normal operation or after a datacenter failure), it could apply it without worrying

about whether it is out of order. The one restriction in this scheme is that we cannot mix

commutative and noncommutative operations: setting the value of the counter at any

time after the record inserted is forbidden, since we do not know how to properly order an

increment and an overwrite of the value.

Another extension to our approach is to allow updates to multiple records. Many web

workloads involve updates to a single record at a time, which is why we focused on time-

line consistency at a per-record basis. However, it is occasionally desirable to update mul-

tiple records. For example, in our social networking application we might have binary

friend links: if Alice and Bob are friends, then Alice appears in Bob’s friend list and Bob

appears in Alice’s. When Alice and Bob become friends, we thus need to update two

records. Because we do not provide ACID transactions, we cannot guarantee this update is

atomic. However, we can provide bundled writes: with one call to the database, the applica-

tion can request both writes, and the database will ensure that both writes eventually

occur. To accomplish this, we log the requested writes, and the system retries the writes

until they succeed. This approach preserves per-record timeline consistency, and since the

retries can be asynchronous, preserves our performance goals.

In summary, timeline consistency provides a simple semantics for how record updates are

propagated, and flexibility in how applications can trade-off read latency for currency.

However, it does not support general ACID transactions—in particular, transactions that

read and write multiple records.

Complex Queries
As web applications become more complex and interesting, they need to retrieve and

combine information from the database in new and different ways. Next, we examine

how to support those queries at a massive scale.

The Challenge

Our system is optimized for queries that touch one or just a few records. In particular, we

can look up records by primary key; once we know Alice’s username, it is straightforward

to determine which partition contains her profile record and read it while loading her

page. Also, our system can store data as hash-partitioned or range-partitioned tables. For

range-partitioned tables, we can conduct range scans over ordered ranges of primary keys.

C L O U D S T O R A G E D E S I G N I N A P N U T S H E L L 65

For example, we might store Alice’s friends list by having one record per connection, where

the primary key of each connection is the pair of user IDs for Alice and the friend (Table 4-7).

In a range-partitioned table, all of the records prefixed with “Alice” will be clustered, and a

short-range scan will be able to pick them up.

Now imagine that we want to add another feature to our social network site. Users can

post photos and then comment on one another’s photos. Alice might comment on Bob’s

photo, Charles’s photo, and Dave’s photo. When we display a photo, we want to show the

set of comments associated with that photo. We also want to show Alice the set of com-

ments she has made on other people’s photos. We specify the primary key of the com-

ments table as (PhotoID,CommentID) and store it as an ordered YDOT table (Table 4-8), so

that all comments for the same photo are clustered and can be retrieved by a range query.

How can we collect the set of comments that Alice has made? We have to perform a join

between Alice’s profile record (which contains her username as a key) and the comment

records (which have Alice’s username as a foreign key). Because of our scale-out architec-

ture, data is partitioned across many servers, so computing the join can require accessing

many servers. This expensive operation drives up the latency of requests, both because

multiple servers must be contacted and because a single query generates a great deal of

server load (which slows down other requests).

Another type of query that can be expensive to compute in a scale-out system is group-by-

aggregate queries. Imagine that users specify hobbies, and we want to count the number of

users who have each hobby so that we can show Alice which hobbies are most popular. Such

a query requires scanning all of the data and maintaining counts. The table scan will place

prohibitive load on the system and certainly cannot be done synchronously, as Alice’s page

will take forever to load.

These examples show that while point lookups and range scans can be executed quickly,

more expensive join and aggregation queries cannot be executed synchronously.

T A B L E 4 - 7 . Friends table

User1 User2 …

Alice Bob …

Alice Charles …

Alice Dave …

…

T A B L E 4 - 8 . Photo comments table

PhotoID CommentID Comment Commenter

Photo123 18 Cool Mary

Photo123 22 Pretty Alice

Photo123 29 Interesting Charles

…

66 C H A P T E R F O U R

Our Approach

Our key principle for handling expensive operations is to do them asynchronously, but

expensive queries cannot really be handled this way; we do not want to make Alice come

back repeatedly to check whether the asynchronous query collecting all of her comments

has completed.

Materialized views (Agarawal et al. 2009) can, however, be maintained asynchronously,

and when Alice logs in she can quickly (and synchronously) query the view.* Although an

asynchronously maintained view can be stale compared to the base data, the application

already must be built to cope with stale replicas, so dealing with stale view data is usually

acceptable. In fact, we treat a materialized view as a special kind of replica that both repli-

cates and transforms data. By using the same mechanism that updates replicas to also

update views, we ensure that views have similar reliability and consistency guarantees as

replicated base data, without having to design and implement a second mechanism.

Even though view maintenance is done in the background, we still want to make it cheap.

If view maintenance takes too many system resources, it will either disrupt synchronous

read and write requests (adding latency to every query), or we will have to throttle it to

run slowly, at which point the view will be so stale as to possibly be unusable. Thus, we

have to find ways to make view maintenance efficient. Consider the earlier example

where we want to show Alice all of the comments she has made on other people’s photos.

We will create a materialized view where comment data is reorganized to be clustered by

the foreign key (username of the commenter) rather than the primary key. Then, all of

the comments made by Alice will be clustered together. We can also place Alice’s profile

record in the view, keyed by her username, so that her profile and her comments are clus-

tered. Computing the key/foreign key join is as easy as scanning the set of view records

prefixed with “Alice”, and then joining them. The result is shown in Table 4-9.

Note that we do not prejoin the profile and comment records in the view. By merely co-

locating records that would join, we make join maintenance cheap: whenever there is an

update to a base record, we only have to update a single view record, even if that view

record would join with multiple other records.

* Materialized views are not currently in the production version of the system.

T A B L E 4 - 9 . Co-clustering joining profile and comment records

Alice West 32 Alice Smith … ← Profile record

Alice Photo123 22 Pretty … ← Comment records

Alice Photo203 43 Nice … ↓

Alice Photo418 33 OK …

…

C L O U D S T O R A G E D E S I G N I N A P N U T S H E L L 67

How can we store profile and comment records in the same table? In a traditional database

it would be difficult, since the two records have different schemas. However, a core fea-

ture of PNUTS is its ability to represent flexible schemas. Different records in the same

table can have different sets of attributes. This feature is very useful in web applications since

web data is often sparse; a database of items for sale will have different attributes (e.g., color,

weight, RAM, flavor) depending on what kind of item it is. It turns out that flexible sche-

mas are also key to implementing materialized join views so that we can colocate joining

records from different tables.

The asynchronous view approach is useful for helping to answer other kinds of queries as

well. A group-by-aggregation query can be effectively answered by a materialized view

that has pregrouped, and maybe even preaggregated, the data. There are even “simple”

queries, such as a selection over a nonprimary key attribute, that can be most effectively

answered by a materialized view. Consider a query for users who live in Sunnyvale, Cali-

fornia. Since our user table is keyed by username, this query normally requires an expen-

sive table scan. However, we can use the materialized view mechanism to build a

secondary index over the “location” field of the table, store the index in an ordered YDOT

table, and then conduct a range scan over the “Sunnyvale, California” index records to

answer our query (Table 4-10).

As with materialized views in other systems, we can create them effectively only if we know

in advance what kinds of queries to expect. Luckily, in web-serving workloads, the queries

are usually templates known in advance with specific parameters (such as the location or

username) bound at runtime. As such, application developers know in advance which que-

ries are complex enough to require materializing a view. To ask ad hoc queries over data

stored in PNUTS, developers have to use our plug-ins to pull data out of our system into a

compute grid running Hadoop, the open source implementation of MapReduce.

Once we have a few different mechanisms for handling complex queries, it will be useful

to implement a query planner to help execute queries effectively. A planner helps remove

some of the burden from the application developer, who can write declarative queries

without worrying too much about how they will be executed. However, an effective

query planner at our scale will require sophisticated statistics collection, load monitoring,

network monitoring, and a variety of other mechanisms to make sure the planner has

enough information about all the possible bottlenecks in the system to make the most

effective query plan.

T A B L E 4 - 1 0 . Location index

Location Username

Sunnyvale, CA Alice

Sunnyvale, CA Mary

Sunnyvale, CA Steve

Sunnyvale, CA Zach

…

68 C H A P T E R F O U R

Comparison with Other Systems
When we began thinking about PNUTS, two other massive scale database systems from

Google and Amazon had recently been announced, and a third from Microsoft would later

be made public. As we developed our designs, we examined these other systems carefully

to see whether some or all of their ideas could be useful to us. Some of the ideas from

these systems influenced us, but we decided to build a new system with an architecture

that was different in many ways. We now look at each of these systems and discuss why

we decided to depart from their design principles.

Google’s BigTable

BigTable (Chang et al. 2006) is a system designed to support many of Google’s web appli-

cations. The system is based on horizontally partitioning a “big table” into many smaller

tablets, and scattering those tablets across servers. This basic approach to scalability, as

well as features such as flexible schema and ordered storage, are similar to the approach

we took. However, there were several design decisions where we diverged from BigTable.

The first major difference was in our approach to replication. BigTable is built on top of the

Google File System (GFS; Ghemawat et al. 2003), and GFS handles the replication of data

by synchronously updating three copies of the data on three different servers. This

approach works well in a single colo, where interserver latencies are low. However, syn-

chronously updating servers in three different, widely dispersed colos is too expensive;

Alice might wait a long time for her status to be updated, especially if her friends access a

datacenter with a poor connection to the Internet backbone. To support cross-colo replica-

tion, we developed the timeline consistency model, and the associated mechanisms for

mastership, load balancing, and failure handling.

We also decided not to enforce the separation between database server and filesystem that

is enforced between BigTable and GFS. GFS was originally designed and optimized for

scan-oriented workloads of large files (for example, for MapReduce). BigTable uses GFS by

keeping a version history of each record, compacted into a file format called SSTables to

save space. This means that on record reads and updates, the data must be decoded and

encoded into this compressed format. Moreover, the scan-oriented nature of GFS makes

BigTable useful for column-oriented scans (such as “retrieve all the locations of all the

users”). In contrast, our primary workload is to read or update a single version of a single

record or a small range of records. Thus, we store data on disk as complete records orga-

nized into a B-tree. This approach is optimized for quickly locating, and updating in-place,

individual records identified by primary key.

PNUTS differs from BigTable in other ways as well. For example, we support multiple

tables for an application, instead of one large table, and we support hash as well as ordered

tables. A follow on to BigTable, called MegaStore (Furman et al. 2008), adds transactions,

indexes, and a richer API, but still follows the basic architectural tenets of BigTable.

C L O U D S T O R A G E D E S I G N I N A P N U T S H E L L 69

Amazon’s Dynamo

Dynamo (DeCandia et al. 2007) is one of the systems Amazon has built recently for large-

scale data workloads, and is the one most closely aligned with our goals of a highly avail-

able, massive scale structured record store. (Records in Dynamo are referred to as objects.)

Dynamo provides write availability by allowing applications to write to any replica, and

lazily propagating those updates to other replicas via a gossip protocol (explained next).

The decision to lazily propagate updates to deal with slow and failure-prone networks

matches our own; however, our mechanism for replication is quite different. In a gossip

protocol, an update is propagated to randomly chosen replicas, which in turn propagates it

to other randomly chosen replicas. This randomness is essential to the probabilistic guar-

antees offered by the protocol, which ensures that most replicas are updated relatively

quickly. In our setting, however, randomness is decidedly suboptimal. Consider an update

Alice makes to her status in a colo on the west coast of the U.S. Under gossip, this update

may be randomly propagated to a replica in Singapore, which then randomly propagates

the update to a replica in Texas, which then randomly propagates the update to a replica

in Tokyo. The update has crossed the Pacific Ocean three times, whereas a more determin-

istic approach could conserve scarce trans-Pacific backbone bandwidth and transfer it (and

other updates) only once. Moreover, gossip requires the replica propagating the update to

know which servers in which other colos have replicas, which makes it hard to move data

between servers for load balancing or recovery.

Another key difference with Dynamo is the consistency protocol. Gossip lends itself to an

eventual consistency model: all data replicas will eventually match, but in the interim, while

updates are propagating, replicas can be inconsistent. In particular, replicas can have a state

that is later deemed “invalid.” Consider, for example, Alice, who updates her status from

“Sleeping” to “Busy” and then updates her location from “Home” to “Work.” Because of the

order of updates, the only valid states of the record (from Alice’s perspective, which is what

matters) are (Sleeping,Home), (Busy,Home), and (Busy,Work). Under eventual consistency, if the

two updates are made at different replicas, some replicas might receive the update to “Work”

first, meaning that those replicas show a state of (Sleeping,Work) temporarily. If Alice’s boss

sees this status, Alice might be in trouble! Applications that rely on the application of multiple

updates to a record in the proper order need a stronger guarantee than eventual consistency.

Although our timeline consistency model allows replicas to be stale, even stale replicas have a

consistent version that reflects the proper update ordering.

There are various other differences with Dynamo: Dynamo provides only a hash table and

not an ordered table, and we have opted for a more flexible mapping of data to servers in

order to improve load balancing and recovery (especially for ordered tables, which might

have unpredictable hot spots). Amazon also provides other storage systems besides

Dynamo: S3 for storing blobs of data, and SimpleDB for executing queries over structured,

indexed data. Although SimpleDB provides a richer API, it requires that the application

come up with a partitioning of the data such that each partition is within a fixed size limit.

Thus, data growth within a partition is restricted.

70 C H A P T E R F O U R

Microsoft Azure SDS

Microsoft has built a massive scale version of SQL Server (called SQL Data Services or

SDS) as part of its Azure services offering (http://hadoop.apache.org). Again, the focus is on

scalability through horizontal partitioning. A nice feature of SDS is the enhanced query

capabilities made available by extensively indexing data and providing SQL Server as the

query-processing engine. However, SDS achieves this query expressiveness by rigidly

enforcing partitioning: applications create their own partitions and cannot easily reparti-

tion data. Thus, although you can ask expressive queries over a partition, if a partition

grows or becomes hot, the system cannot easily or automatically relieve the hotspot by

splitting the partition. Our decision to hide partitioning behind the abstraction of a table

allows us to make and change partitioning decisions for load and recovery reasons. While

this means that our query model is less expressive (since we do not support complex que-

ries which cross partitions), we are continuing to look at ways to enhance our query func-

tionality (for example, through views, as described earlier).

Another difference with SDS is that PNUTS has geographic replication built in as a first-

class feature of the system. In at least the first release of SDS, the workload is expected to

live within a single datacenter, and remote copies are only used in case of a total failure of

the primary replica. We want Alice’s friends in Singapore, Berlin, and Rio de Janeiro to

have their own local, first-class copies of Alice’s updates.

Other Related Systems

A variety of other systems have been built by companies who have scalability and flexibil-

ity needs similar to ours. Facebook has built Cassandra (Lakshman et al. 2008), a peer-to-

peer data store with a BigTable-like data model but built on a Dynamo-like infrastructure.

Consequently, Cassandra provides only eventual consistency.

Sharded databases (such as the MySQL sharding approach used by Flickr [Pattishall] and

Facebook [Sobel 2008]) provide scalability by partitioning the data across many servers;

however, sharding systems do not typically provide as much flexibility for scaling or glo-

bally replicating data as we desire. Data must be prepartitioned, just like in SimpleDB.

Also, only one of the replicas can be the master and accept writes. In PNUTS, all replicas in

different data centers can accept writes (although for different records).

Other Systems at Yahoo!

PNUTS is one of several cloud systems that are being built at Yahoo!. Two other compo-

nents of the cloud are also targeted at data management, although they focus on a differ-

ent set of problems than PNUTS. Hadoop (http://hadoop.apache.org), an open source

implementation of the MapReduce framework (Dean and Ghemawat 2007), provides

massively parallel analytical processing over large datafiles. Hadoop includes a filesystem,

http://hadoop.apache.org
http://hadoop.apache.org

C L O U D S T O R A G E D E S I G N I N A P N U T S H E L L 71

HDFS, which is optimized for scans, since MapReduce jobs are primarily scan-oriented

workloads. In contrast, PNUTS is focused on reads and writes of individual records.

Another system is MObStor, which is designed to store and serve massive objects such as

images or video. MObStor’s goal is to provide low-latency retrieval and inexpensive stor-

age for objects that do not change. Since many applications need a combination of record

storage, data analysis, and object retrieval, we are working on ways to seamlessly integrate

the three systems. A survey of our efforts to integrate these systems into a comprehensive

cloud is at (Cooper et al. 2009).

Conclusion
When we embarked on the PNUTS project, we had in mind a system that could seamlessly

scale to thousands of servers and multiple continents. Building such a system required

more than clever engineering; it required us to reopen many settled debates in the data-

base field. Although it was a relatively easy decision to jettison ACID, we soon realized we

had to develop something to replace it, and thus developed the timeline consistency

model. Although the model is relatively simple by design, handling complex corner cases,

developing an efficient implementation mechanism, and mapping application use cases to

the model required deep thinking and many iterations. Another point to note is that at

first our customers and we were relatively blasé about restricting ourselves to a simple

query language. However, as developers began trying to build real applications on top of

PNUTS, we realized that the small fraction of the query workload that was more complex

than we could handle would be a major stumbling block to the system’s adoption. If we

did not develop a mechanism to handle these queries, developers would have to resort to

complicated workarounds, either implementing expensive operations (such as nested loop

joins) in their application logic or frequently exporting data to external indexes to support

their workload.

The field is in the early stages of cloud data management, and this is reflected in the many

alternative system designs being built and deployed. We hope the ideas embodied in the

PNUTS system can help us get closer to the goal of easily manageable, broadly applicable,

multitenanted cloud database systems that provide applications with elastic, efficient, glo-

bally available, and extremely robust data backends.

Acknowledgments
PNUTS is a collaborative effort among many different people at Yahoo!. Leading the engi-

neering effort are P.P.S. Narayan and Chuck Neerdaels. Other researchers on the project

include Adam Silberstein and Rodrigo Fonseca. Brad McMillen and Pat Quaid help with

the architecture of PNUTS and its place in Yahoo!’s cloud offerings. Other designers and

developers of the system have included Phil Bohannon, Ramana Yerneni, Daniel Weaver,

Michael Bigby, Nicholas Puz, Hans-Arno Jacobsen, Bryan Call, and Andrew Feng.

72 C H A P T E R F O U R

References
Azure Services Platform. http://www.microsoft.com/azure/.

Hadoop. http://hadoop.apache.org.

Agrawal, P., A. Silberstein, B. F. Cooper, U. Srivastava, and R. Ramakrishnan. “Asynchro-

nous View Maintenance for VLSD Databases.” In SIGMOD, 2009.

Chang, F. et al. “Bigtable: A distributed storage system for structured data.” In OSDI, 2006.

Cooper, B. F., E. Baldeschwieler, R. Fonseca, J. J. Kistler, P.P.S. Narayan, Chuck Neerdaels,

Toby Negrin, Raghu Ramakrishnan, Adam Silberstein, Utkarsh Srivastava, and Raymie

Stata. “Building a cloud for Yahoo!” IEEE Data Engineering Bulletin, 32(1): 36–43, 2009.

Cooper, B. F., R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen,

N. Puz, D. Weaver, and R. Yerneni. “PNUTS: Yahoo!’s hosted data serving platform.” In

VLDB, 2008.

Dean, J. and S. Ghemawat. “MapReduce: Simplified data processing on large clusters.” In

OSDI, 2004.

DeCandia, G. et al. “Dynamo: Amazon’s highly available key-value store.” In SOSP, 2007.

Furman, J. J., J. S. Karlsson, J.-M. Leon, A. Lloyd, S. Newman and P. Zeyliger. “Megastore:

A Scalable Data System for User Facing Applications.” In SIGMOD, 2008.

Ghemawat, S., H. Gobioff, and S.-T. Leung. “The Google File System.” In SOSP, 2003.

Lakshman, A., P. Malik, and K. Ranganathan. “Cassandra: A Structured Storage System

on a P2P Network.” In SIGMOD, 2008.

Pattishall, D. V. “Federation at Flickr: Doing Billions of Queries Per Day.” http://www.scribd.

com/doc/2592098/DVPmysqlucFederation-at-Flickr-Doing-Billions-of-Queries-Per-Day.

Ramakrishnan, R. and J. Gehrke. Database Management Systems. McGraw-Hill, New

York, NY, 2002.

Silberstein, A., B. F. Cooper, U. Srivastava, E. Vee, R. Yerneni, and R. Ramakrishnan.

“Efficient bulk insertion into a distributed ordered table.” In SIGMOD, 2008.

Sobel, J. “Scaling out.” Facebook Engineering Blog, August 2008.

http://www.microsoft.com/azure/
http://hadoop.apache.org
http://www.scribd.com/doc/2592098/DVPmysqlucFederation-at-Flickr-Doing-Billions-of-Queries-Per-Day
http://www.scribd.com/doc/2592098/DVPmysqlucFederation-at-Flickr-Doing-Billions-of-Queries-Per-Day

73

Chapter 5 C H A P T E R F I V E

Information Platforms and the Rise of
the Data Scientist

Jeff Hammerbacher

Libraries and Brains
AT THE AGE OF 17, I WAS FIRED FROM MY JOB AS A CASHIER AT SCOTT’S GROCERY STORE IN FORT

Wayne, Indiana. With only two months remaining before my freshman year of college, I

saw in my unemployment an opportunity. Instead of telling my parents that I had been

fired, I continued to leave the house every afternoon in my cashier’s outfit: black pants,

black shoes, white shirt, and smock. To my parents, I looked ready for some serious cou-

pon scanning; in reality, I was pulling 10-hour shifts reading at the public library.

All reasonably curious people wonder how their brain works. At 17, I was unreasonably

curious. I used my time at the library to learn about how brains work, how they break,

and how they are rebuilt. In addition to keeping us balanced, regulating our body temper-

ature, and making sure we blink our eyelids together every now and again, our brains

ingest, process, and generate massive amounts of information. We construct unconscious

responses to our immediate environment, short-term plans for locution and limb place-

ment, and long-term plans for mate selection and education. What makes brains interest-

ing is not just their ability to generate reactions to sensory data, but their role as repository

of information for both plan generation and the creation of new information. I wanted to

learn how that worked.

74 C H A P T E R F I V E

One thing about brains, though: they remain stubbornly housed within a single body. To

collect information from many brains, we build libraries. The field of library science has

evolved numerous techniques for herding the information stored in libraries to enable

future consumption; a fun read on the topic is Alex Wright’s Glut (Joseph Henry Press). In

addition to housing information for future retrieval, libraries play a critical role in the cre-

ation of new information. As philosopher Daniel Dennett puts it, “a scholar is just a

library’s way of making another library.”

Libraries and brains are two examples of Information Platforms. They are the locus of their

organization’s efforts to ingest, process, and generate information, and they serve to accel-

erate the process of learning from empirical data. When I joined Facebook in 2006, I natu-

rally started to build an Information Platform. Because of the tremendous growth in the

number of users on Facebook, the system our team built ended up managing several

petabytes of data. In this chapter, I’ll recount the challenges faced in building out Face-

book’s Information Platform and the lessons learned while constructing our solution from

open source software. I’ll also try to outline the critical role of the Data Scientist in using

that information to build data-intensive products and services and helping the organiza-

tion formulate and accomplish goals. Along the way, I’ll recount how some other busi-

nesses have approached the problem of building Information Platforms over the decades.

Before we get started, I should point out that my clever plan to visit the library instead of

the grocery store did not work out as intended. After a few blissful days of reading, I came

out of the library one evening and couldn’t locate my car. It was not uncommon for me to

lose my car at the time, but the lot was empty, so I knew something was up. It turns out

that my mom had figured out my scheme and gotten my car towed. During the long walk

home, I internalized an important lesson: regard your own solutions with skepticism.

Also, don’t try to outsmart your mother.

Facebook Becomes Self-Aware
In September 2005, Facebook opened to non-college students for the first time and

allowed high school students to register for accounts. Loyal users were outraged, but the

Facebook team felt that it was the right direction for the site. How could it produce evi-

dence to justify its position?

In addition, Facebook had saturated the student population at nearly all of the colleges

where it was available, but there were still some colleges where the product had never

taken off. What distinguished these laggard networks from their more successful peers,

and what could be done to stimulate their success?

When I interviewed at Facebook in February 2006, they were actively looking to answer

these questions. I studied mathematics in college and had been working for a nearly a year on

Wall Street, building models to forecast interest rates, price complex derivatives, and hedge

pools of mortgages; I had some experience coding and a dismal GPA. Despite my potentially

suboptimal background, Facebook made me an offer to join as a Research Scientist.

I N F O R M A T I O N P L A T F O R M S A N D T H E R I S E O F T H E D A T A S C I E N T I S T 75

Around the same time, Facebook hired a Director of Reporting and Analytics. The director

had far more experience in the problem domain than me; together with a third engineer,

we set about building an infrastructure for data collection and storage that would allow us

to answer these questions about our product.

Our first attempt at an offline repository of information involved a Python script for farm-

ing queries out to Facebook’s tier of MySQL servers and a daemon process, written in

C++, for processing our event logs in real time. When the scripts worked as planned, we

collected about 10 gigabytes a day. I later learned that this aspect of our system is com-

monly termed the “ETL” process, for “Extract, Transform, and Load.”

Once our Python scripts and C++ daemon had siphoned the data from Facebook’s source

systems, we stuffed the data into a MySQL database for offline querying. We also had

some scripts and queries that ran over the data once it landed in MySQL to aggregate it

into more useful representations. It turns out that this offline database for decision support

is better known as a “Data Warehouse.”

Finally, we had a simple PHP script to pull data from the offline MySQL database and dis-

play summaries of the information we had collected to internal users. For the first time,

we were able to answer some important questions about the impact of certain site features

on user activity. Early analyses looked at maximizing growth through several channels:

the layout of the default page for logged-out users, the source of invitations, and the

design of the email contact importer. In addition to analyses, we started to build simple

products using historical data, including an internal project to aggregate features of spon-

sored group members that proved popular with brand advertisers.

I didn’t realize it at the time, but with our ETL framework, Data Warehouse, and internal

dashboard, we had built a simple “Business Intelligence” system.

A Business Intelligence System
In a 1958 paper in the IBM Systems Journal, Hans Peter Luhn describes a system for “selec-

tive dissemination” of documents to “action points” based on the “interest profiles” of the

individual action points. The author demonstrates shocking prescience. The title of the

paper is “A Business Intelligence System,” and it appears to be the first use of the term

“Business Intelligence” in its modern context.

In addition to the dissemination of information in real time, the system was to allow for

“information retrieval”—search—to be conducted over the entire document collection.

Luhn’s emphasis on action points focuses the role of information processing on goal com-

pletion. In other words, it’s not enough to just collect and aggregate data; an organization

must improve its capacity to complete critical tasks because of the insights gleaned from

the data. He also proposes “reporters” to periodically sift the data and selectively move

information to action points as needed.

76 C H A P T E R F I V E

The field of Business Intelligence has evolved over the five decades since Luhn’s paper was

published, and the term has come to be more closely associated with the management of

structured data. Today, a typical business intelligence system consists of an ETL framework

pulling data on a regular basis from an array of data sources into a Data Warehouse, on

top of which sits a Business Intelligence tool used by business analysts to generate reports

for internal consumption. How did we go from Luhn’s vision to the current state of

affairs?

E. F. Codd first proposed the relational model for data in 1970, and IBM had a working

prototype of a relational database management system (RDBMS) by the mid-1970s. Build-

ing user-facing applications was greatly facilitated by the RDBMS, and by the early 1980s,

their use was proliferating.

In 1983, Teradata sold the first relational database designed specifically for decision sup-

port to Wells Fargo. A few years later, in 1986, Ralph Kimball founded Red Brick Systems

to build databases for the same market. Solutions were developed using Teradata and Red

Brick’s offerings, but it was not until 1991 that the first canonical text on data warehous-

ing was published.

Bill Inmon’s Building the Data Warehouse (Wiley) is a coherent treatise on data warehouse

design and includes detailed recipes and best practices for building data warehouses.

Inmon advocates constructing an enterprise data model after careful study of existing data

sources and business goals.

In 1995, as Inmon’s book grew in popularity and data warehouses proliferated inside

enterprise data centers, The Data Warehouse Institute (TDWI) was formed. TDWI holds

conferences and seminars and remains a critical force in articulating and spreading knowl-

edge about data warehousing. That same year, data warehousing gained currency in aca-

demic circles when Stanford University launched its WHIPS research initiative.

A challenge to the Inmon orthodoxy came in 1996 when Ralph Kimball published The

Data Warehouse Toolkit (Wiley). Kimball advocated a different route to data warehouse nir-

vana, beginning by throwing out the enterprise data model. Instead, Kimball argued that

different business units should build their own data “marts,” which could then be con-

nected with a “bus.” Further, instead of using a normalized data model, Kimball advocated

the use of dimensional modeling, in which the relational data model was manhandled a

bit to fit the particular workload seen by many data warehouse implementations.

As data warehouses grow over time, it is often the case that business analysts would like to

manipulate a small subset of data quickly. Often this subset of data is parameterized by a

few “dimensions.” Building on these observations, the CUBE operator was introduced in

1997 by a group of Microsoft researchers, including Jim Gray. The new operator enabled

fast querying of small, multidimensional data sets.

Both dimensional modeling and the CUBE operator were indications that, despite its suc-

cess for building user-facing applications, the relational model might not be best for con-

structing an Information Platform. Further, the document and the action point, not the

I N F O R M A T I O N P L A T F O R M S A N D T H E R I S E O F T H E D A T A S C I E N T I S T 77

table, were at the core of Luhn’s proposal for a business intelligence system. On the other

hand, an entire generation of engineers had significant expertise in building systems for

relational data processing.

With a bit of history at our back, let’s return to the challenges at Facebook.

The Death and Rebirth of a Data Warehouse
At Facebook, we were constantly loading more data into, and running more queries over,

our MySQL data warehouse. Having only run queries over the databases that served the

live site, we were all surprised at how long a query could run in our data warehouse. After

some discussion with seasoned data warehousing veterans, I realized that it was normal to

have queries running for hours and sometimes days, due to query complexity, massive

data volumes, or both.

One day, as our database was nearing a terabyte in size, the mysqld daemon process came

to a sudden halt. After some time spent on diagnostics, we tried to restart the database.

Upon initiating the restart operation, we went home for the day.

When I returned to work the next morning, the database was still recovering. To get a

consistent view of data that’s being modified by many clients, a database server maintains

a persistent list of all edits called the “redo log” or the “write-ahead log.” If the database

server is unceremoniously killed and restarted, it will reread the recent edits from the redo

log to get back up to speed. Given the size of our data warehouse, the MySQL database

had quite a bit of recovery to catch up on. It was three days before we had a working data

warehouse again.

We made the decision at that point to move our data warehouse to Oracle, whose database

software had better support for managing large data sets. We also purchased some expensive

high-density storage and a powerful Sun server to run the new data warehouse.

During the transfer of our processes from MySQL to Oracle, I came to appreciate the dif-

ferences between supposedly standard relational database implementations. The bulk

import and export facilities of each database used completely different mechanisms. Fur-

ther, the dialect of SQL supported by each was different enough to force us to rewrite

many of our queries. Even worse, the Python client library for Oracle was unofficial and a

bit buggy, so we had to contact the developer directly.

After a few weeks of elbow grease, we had the scripts rewritten to work on the new Oracle

platform. Our nightly processes were running without problems, and we were excited to

try out some of the tools from the Oracle ecosystem. In particular, Oracle had an ETL tool

called Oracle Warehouse Builder (OWB) that we hoped could replace our handwritten

Python scripts. Unfortunately, the software did not expect the sheer number of data

sources we had to support: at the time, Facebook had tens of thousands of MySQL data-

bases from which we collected data each night. Not even Oracle could help us tackle our

scaling challenges on the ETL side, but we were happy to have a running data warehouse

with a few terabytes of data.

78 C H A P T E R F I V E

And then we turned on clickstream logging: our first full day sent 400 gigabytes of

unstructured data rushing over the bow of our Oracle database. Once again, we cast a

skeptical eye on our data warehouse.

Beyond the Data Warehouse
According to IDC, the digital universe will expand to 1,800 exabytes by 2011. The vast

majority of that data will not be managed by relational databases. There’s an urgent need

for data management systems that can extract information from unstructured data in con-

cert with structured data, but there is little consensus on the way forward.

Natural language data in particular is abundant, rich with information, and poorly man-

aged by a data warehouse. To manage natural language and other unstructured data,

often captured in document repositories and voice recordings, organizations have looked

beyond the offerings of data warehouse vendors to various new fields, including one

known as enterprise search.

While most search companies built tools for navigating the collection of hyperlinked docu-

ments known as the World Wide Web, a few enterprise search companies chose to focus on

managing internal document collections. Autonomy Corporation, founded in 1996 by

Cambridge University researchers, leveraged Bayesian inference algorithms to facilitate the

location of important documents. Fast Search and Transfer (FAST) was founded in 1997 in

Norway with more straightforward keyword search and ranking at the heart of its technol-

ogy. Two years later, Endeca was founded with a focus on navigating document collections

using structured metadata, a technique known as “faceted search.” Google, seeing an

opportunity to leverage its expertise in the search domain, introduced an enterprise search

appliance in 2000.

In a few short years, enterprise search has grown into a multibillion-dollar market seg-

ment that is almost totally separate from the data warehouse market. Endeca has some

tools for more traditional business intelligence, and some database vendors have worked

to introduce text mining capabilities into their systems, but a complete, integrated solution

for structured and unstructured enterprise data management remains unrealized.

Both enterprise search and data warehousing are technical solutions to the larger problem

of leveraging the information resources of an organization to improve performance. As far

back as 1944, MIT professor Kurt Lewin proposed “action research” as a framework that

uses “a spiral of steps, each of which is composed of a circle of planning, action, and fact-

finding about the result of the action.” A more modern approach to the same problem can

be found in Peter Senge’s “Learning Organization” concept, detailed in his book The Fifth

Discipline (Broadway Business). Both management theories rely heavily upon an organiza-

tion’s ability to adapt its actions after reflecting upon information collected from previous

actions. From this perspective, an Information Platform is the infrastructure required by a

Learning Organization to ingest, process, and generate the information necessary for

implementing the action research spiral.

I N F O R M A T I O N P L A T F O R M S A N D T H E R I S E O F T H E D A T A S C I E N T I S T 79

Having now looked at structured and unstructured data management, let’s get back to the

Facebook story.

The Cheetah and the Elephant
On the first day of logging the Facebook clickstream, more than 400 gigabytes of data was

collected. The load, index, and aggregation processes for this data set really taxed the Ora-

cle data warehouse. Even after significant tuning, we were unable to aggregate a day of

clickstream data in less than 24 hours. It was clear we’d need to aggregate our logfiles out-

side of the database and store only the summary information for later querying.

Luckily, a top engineer from a large web property had recently joined our team and had

experience processing clickstream data at web scale. In just a few weeks, he built a paral-

lelized log processing system called Cheetah that was able to process a day of clickstream

data in two hours. There was much rejoicing.

Despite our success, Cheetah had some drawbacks: first, after processing the clickstream

data, the raw data was stored in archival storage and could not be queried again. In addi-

tion, Cheetah pulled the clickstream data from a shared NetApp filer with limited read

bandwidth. The “schema” for each logfile was embedded in the processing scripts rather

than stored in a format that could be queried. We did not collect progress information and

we scheduled Cheetah jobs using a basic Unix utility called cron, so no sophisticated load-

sharing logic could be applied. Most importantly, however, Cheetah was not open source.

We had a small team and could not afford the resources required to develop, maintain,

and train new users to use our proprietary system.

The Apache Hadoop project, started in late 2005 by Doug Cutting and Mike Cafarella, was

a top candidate to replace Cheetah. Named after the stuffed elephant of Doug’s son, the

Hadoop project aimed to implement Google’s distributed filesystem and MapReduce tech-

nologies under the Apache 2.0 license. Yahoo! hired Doug Cutting in January 2006 and

devoted significant engineering resources to developing Hadoop. In April 2006, the soft-

ware was able to sort 1.9 terabytes in 47 hours using 188 servers. Although Hadoop’s

design improved on Cheetah’s in several areas, the software was too slow for our needs at

that time. By April 2008, however, Hadoop was able to sort 1 terabyte in 209 seconds

using 910 servers. With the improved performance numbers in hand, I was able to con-

vince our operations team to stick three 500-gigabyte SATA drives in the back of 60

unused web servers, and we went forward with our first Hadoop cluster at Facebook.

Initially, we started streaming a subset of our logs into both Hadoop and Cheetah. The

enhanced programmability of Hadoop coupled with the ability to query the historical data

led to some interesting projects. One application involved scoring all directed pairs of

interacting users on Facebook to determine their affinity; this score could then be used for

search and News Feed ranking. After some time, we migrated all Cheetah workflows to

Hadoop and retired the old system. Later, the transactional database collection processes

were moved to Hadoop as well.

80 C H A P T E R F I V E

With Hadoop, our infrastructure was able to accommodate unstructured and structured

data analysis at a massive scale. As the platform grew to hundreds of terabytes and thou-

sands of jobs per day, we learned that new applications could be built and new questions

could be answered simply because of the scale at which we were now able to store and

retrieve data.

When Facebook opened registration to all users, the user population grew at dispropor-

tionately rapid rates in some countries. At the time, however, we were not able to perform

granular analyses of clickstream data broken out by country. Once our Hadoop cluster was

up, we were able to reconstruct how Facebook had grown rapidly in places such as Can-

ada and Norway by loading all of our historical access logs into Hadoop and writing a few

simple MapReduce jobs.

Every day, millions of semi-public conversations occur on the walls of Facebook users.

One internal estimate put the size of the wall post corpus at 10 times the size of the blogo-

sphere! Before Hadoop, however, the contents of those conversations remained inaccessible

for data analysis. In 2007, a summer intern with a strong interest in linguistics and statistics,

Roddy Lindsay, joined the Data team. Using Hadoop, Roddy was able to single-handedly

construct a powerful trend analysis system called Lexicon that continues to process terabytes

of wall post data every night; you can see the results for yourself at http://facebook.com/

lexicon.

Having the data from disparate systems stored in a single repository proved critical for the

construction of a reputation scoring system for Facebook applications. Soon after the

launch of the Facebook Platform in May of 2007, our users were inundated with requests

to add applications. We quickly realized that we would need a tool to separate the useful

applications from those the users perceived as spam. Using data collected from the API

servers, user profiles, and activity data from the site itself, we were able to construct a

model for scoring applications that allowed us to allocate invitations to the applications

deemed most useful to users.

The Unreasonable Effectiveness of Data
In a recent paper, a trio of Google researchers distilled what they have learned from trying

to solve some of machine learning’s most difficult challenges. When discussing the prob-

lems of speech recognition and machine translation, they state that, “invariably, simple

models and a lot of data trump more elaborate models based on less data.” I don’t intend

to debate their findings; certainly there are domains where elaborate models are success-

ful. Yet based on their experiences, there does exist a wide class of problems for which

more data and simple models are better.

At Facebook, Hadoop was our tool for exploiting the unreasonable effectiveness of data.

For example, when we were translating the site into other languages, we tried to target

users who spoke a specific language to enlist their help in the translation task. One of our

Data Scientists, Cameron Marlow, crawled all of Wikipedia and built character trigram

frequency counts per language. Using these frequency counts, he built a simple classifier

http://facebook.com/lexicon
http://facebook.com/lexicon

I N F O R M A T I O N P L A T F O R M S A N D T H E R I S E O F T H E D A T A S C I E N T I S T 81

that could look at a set of wall posts authored by a user and determine his spoken language.

Using this classifier, we were able to actively recruit users into our translation program in

a targeted fashion. Both Facebook and Google use natural language data in many applica-

tions; see Chapter 14 of this book for Peter Norvig’s exploration of the topic.

The observations from Google point to a third line of evolution for modern business intelli-

gence systems: in addition to managing structured and unstructured data in a single system,

they must scale to store enough data to enable the “simple models, lots of data” approach

to machine learning.

New Tools and Applied Research
Most of the early users of the Hadoop cluster at Facebook were engineers with a taste for

new technologies. To make the information accessible to a larger fraction of the organiza-

tion, we built a framework for data warehousing on top of Hadoop called Hive.

Hive includes a SQL-like query language with facilities for embedding MapReduce logic, as

well as table partitioning, sampling, and the ability to handle arbitrarily serialized data.

The last feature was critical, as the data collected into Hadoop was constantly evolving in

structure; allowing users to specify their own serialization format allowed us to pass the

problem of specifying structure for the data to those responsible for loading the data into

Hive. In addition, a simple UI for constructing Hive queries, called HiPal, was built. Using

the new tools, non-engineers from marketing, product management, sales, and customer

service were able to author queries over terabytes of data. After several months of internal

use, Hive was contributed back to Hadoop as an official subproject under the Apache 2.0

license and continues to be actively developed.

In addition to Hive, we built a portal for sharing charts and graphs called Argus (inspired

by IBM’s work on the Many Eyes project), a workflow management system called

Databee, a framework for writing MapReduce scripts in Python called PyHive, and a stor-

age system for serving structured data to end users called Cassandra (now available as

open source in the Apache Incubator).

As the new systems stabilized, we ended up with multiple tiers of data managed by a sin-

gle Hadoop cluster. All data from the enterprise, including application logs, transactional

databases, and web crawls, was regularly collected in raw form into the Hadoop distrib-

uted filesystem (HDFS). Thousands of nightly Databee processes would then transform

some of this data into a structured form and place it into the directory of HDFS managed

by Hive. Further aggregations were performed in Hive to generate reports served by

Argus. Additionally, within HDFS, individual engineers maintained “sandboxes” under

their home directories against which prototype jobs could be run.

At its current capacity, the cluster holds nearly 2.5 petabytes of data, and new data is added at

a rate of 15 terabytes per day. Over 3,000 MapReduce jobs are run every day, processing 55

terabytes of data. To accommodate the different priorities of jobs that are run on the cluster,

we built a job scheduler to perform fair sharing of resources over multiple queues.

82 C H A P T E R F I V E

In addition to powering internal and external reports, a/b testing pipelines, and many dif-

ferent data-intensive products and services, Facebook’s Hadoop cluster enabled some

interesting applied research projects.

One longitudinal study conducted by Data Scientists Itamar Rosenn and Cameron Marlow

set out to determine what factors were most critical in predicting long-term user engage-

ment. We used our platform to select a sample of users, trim outliers, and generate a large

number of features for use in several least-angle regressions against different measures of

engagement. Some features we were able to generate using Hadoop included various

measures of friend network density and user categories based on profile features.

Another internal study to understand what motivates content contribution from new

users was written up in the paper “Feed Me: Motivating Newcomer Contribution in Social

Network Sites,” published at the 2009 CHI conference. A more recent study from the

Facebook Data team looks at how information flows through the Facebook social graph;

the study is titled “Gesundheit! Modeling Contagion through Facebook News Feed,” and

has been accepted for the 2009 ICWSM conference.

Every day, evidence is collected, hypotheses are tested, applications are built, and new

insights are generated using the shared Information Platform at Facebook. Outside of

Facebook, similar systems were being constructed in parallel.

MAD Skills and Cosmos
In “MAD Skills: New Analysis Practices for Big Data,” a paper from the 2009 VLDB confer-

ence, the analysis environment at Fox Interactive Media (FIM) is described in detail. Using

a combination of Hadoop and the Greenplum database system, the team at FIM has built a

familiar platform for data processing in isolation from our work at Facebook.

The paper’s title refers to three tenets of the FIM platform: Magnetic, Agile, and Deep.

“Magnetic” refers to the desire to store all data from the enterprise, not just the structured

data that fits into the enterprise data model. Along the same lines, an “Agile” platform

should handle schema evolution gracefully, enabling analysts to work with data immedi-

ately and evolve the data model as needed. “Deep” refers to the practice of performing

more complex statistical analyses over data.

In the FIM environment, data is separated into staging, production, reporting, and sand-

box schemas within a single Greenplum database, quite similar to the multiple tiers inside

of Hadoop at Facebook described earlier.

Separately, Microsoft has published details of its data management stack. In papers titled

“Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks” and

“SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets,” Microsoft describes

an information platform remarkably similar to the one we had built at Facebook. Its infra-

structure includes a distributed filesystem called Cosmos and a system for parallel data

processing called Dryad; it has even invented a SQL-like query language called SCOPE.

I N F O R M A T I O N P L A T F O R M S A N D T H E R I S E O F T H E D A T A S C I E N T I S T 83

Three teams working with three separate technology stacks have evolved similar plat-

forms for processing large amounts of data. What’s going on here? By decoupling the

requirements of specifying structure from the ability to store data and innovating on APIs

for data retrieval, the storage systems of large web properties are starting to look less like

databases and more like dataspaces.

Information Platforms As Dataspaces
Anecdotally, similar petabyte-scale platforms exist at companies such as Yahoo!, Quant-

cast, and Last.fm. These platforms are not quite data warehouses, as they’re frequently not

using a relational database or any traditional data warehouse modeling techniques.

They’re not quite enterprise search systems, as only some of the data is indexed and they

expose far richer APIs. And they’re often used for building products and services in addi-

tion to traditional data analysis workloads. Similar to the brain and the library, these

shared platforms for data processing serve as the locus of their organization’s efforts to

ingest, process, and generate information, and with luck, they hasten their organization’s

pace of learning from empirical data.

In the database community, there has been some work to transition the research agenda

from purely relational data management to a more catholic system for storage and query-

ing of large data sets called a “dataspace.” In “From Databases to Dataspaces: A New

Abstraction for Information Management” (http://www.eecs.berkeley.edu/~franklin/Papers/

dataspaceSR.pdf), the authors highlight the need for storage systems to accept all data for-

mats and to provide APIs for data access that evolve based on the storage system’s under-

standing of the data.

I’d contend that the Information Platforms we’ve described are real-world examples of

dataspaces: single storage systems for managing petabytes of structured and unstructured

data from all parts of an organization that expose a variety of data access APIs for engi-

neering, analysis, and reporting. Given the proliferation of these systems in industry, I’m

hopeful that the database community continues to explore the theoretical foundations

and practical implications of dataspaces.

An Information Platform is the critical infrastructure component for building a Learning

Organization. The most critical human component for accelerating the learning process

and making use of the Information Platform is taking the shape of a new role: the Data

Scientist.

The Data Scientist
In a recent interview, Hal Varian, Google’s chief economist, highlighted the need for

employees able to extract information from the Information Platforms described earlier.

As Varian puts it, “find something where you provide a scarce, complementary service to

something that is getting ubiquitous and cheap. So what’s getting ubiquitous and cheap?

Data. And what is complementary to data? Analysis.”

http://www.eecs.berkeley.edu/~franklin/Papers/dataspaceSR.pdf
http://www.eecs.berkeley.edu/~franklin/Papers/dataspaceSR.pdf

84 C H A P T E R F I V E

At Facebook, we felt that traditional titles such as Business Analyst, Statistician, Engineer,

and Research Scientist didn’t quite capture what we were after for our team. The work-

load for the role was diverse: on any given day, a team member could author a multistage

processing pipeline in Python, design a hypothesis test, perform a regression analysis over

data samples with R, design and implement an algorithm for some data-intensive product

or service in Hadoop, or communicate the results of our analyses to other members of the

organization in a clear and concise fashion. To capture the skill set required to perform this

multitude of tasks, we created the role of “Data Scientist.”

In the financial services domain, large data stores of past market activity are built to serve

as the proving ground for complex new models developed by the Data Scientists of their

domain, known as Quants. Outside of industry, I’ve found that grad students in many sci-

entific domains are playing the role of the Data Scientist. One of our hires for the Face-

book Data team came from a bioinformatics lab where he was building data pipelines and

performing offline data analysis of a similar kind. The well-known Large Hadron Collider

at CERN generates reams of data that are collected and pored over by graduate students

looking for breakthroughs.

Recent books such as Davenport and Harris’s Competing on Analytics (Harvard Business

School Press, 2007), Baker’s The Numerati (Houghton Mifflin Harcourt, 2008), and Ayres’s

Super Crunchers (Bantam, 2008) have emphasized the critical role of the Data Scientist

across industries in enabling an organization to improve over time based on the informa-

tion it collects. In conjunction with the research community’s investigation of dataspaces,

further definition for the role of the Data Scientist is needed over the coming years. By

better articulating the role, we’ll be able to construct training curricula, formulate promo-

tion hierarchies, organize conferences, write books, and fill in all of the other trappings of

a recognized profession. In the process, the pool of available Data Scientists will expand to

meet the growing need for expert pilots for the rapidly proliferating Information Plat-

forms, further speeding the learning process across all organizations.

Conclusion
When faced with the challenge of building an Information Platform at Facebook, I found it

helpful to look at how others had attempted to solve the same problem across time and

problem domains. As an engineer, my initial approach was directed by available technolo-

gies and appears myopic in hindsight. The biggest challenge was keeping focused on the

larger problem of building the infrastructure and human components of a Learning Orga-

nization rather than specific technical systems, such as data warehouses or enterprise

search systems.

I’m certain that the hardware and software employed to build an Information Platform

will evolve rapidly, and the skills required of a Data Scientist will change at the same rate.

Staying focused on the goal of making the learning process move faster will benefit both

organizations and science. The future belongs to the Data Scientist!

85

Chapter 6 C H A P T E R S I X

The Geographic Beauty of a
Photographic Archive

Jason Dykes and Jo Wood

PHOTOGRAPHS CAN BE BEAUTIFUL. IT SEEMS ALMOST DEMEANING TO CONSIDER SOMETHING THAT CAN

capture experience, kindle emotion, and invoke the sublime merely as data. Yet once

stored digitally, we can process a photograph’s binary digits just as we might any other

stream of numeric data. But we can go further: by collecting those photographic represen-

tations together, by arranging them, by describing them, we can create context and a new

beauty emerges, something that is fed by the beauty of the images that comprise the col-

lection, but which is so much more than the sum of its parts.

In this chapter we explore the beauty that emerges when we consider the geography of a

photographic collection, and we examine that geography visually with maps and other

graphics. By geography we mean the information that allows us to associate something

with a place or location (two quite distinct concepts). And when we’re dealing with data,

there’s a lot of geography about. Some estimates suggest that up to 80% of data is geo-

graphic (MacEachren and Kraak 2001). This information might be recorded directly

through latitude and longitudinal coordinates, or indirectly though association with a

postal code, a name, or some other notion of place. This geography can be a useful way of

organizing, filtering, and interpreting data. The geography recorded in the growing number

of large contributed data sets may be a particularly useful source of information about per-

spectives of place.

86 C H A P T E R S I X

Geography can be assigned to data in a number of ways. It may be part of the data collec-

tion process (for example, through satellite remote sensing). It may emerge during data

query and interpretation (for example, through location-based services such as Google

Local). Or it may be generated through more sophisticated spatio-temporal analysis as part

of a process of sensemaking, as typified by the current interest in geovisual analytics

(Andrienko et al. 2008). Here, we will use as our starting point data that has been made

geographic as part of the collection process through specific locations, but that contains

additional, less-explicit descriptions of place. The Geograph archive contains over one mil-

lion photographs that have been pinned to a precise latitude and longitude, either auto-

matically by GPS-enabled devices such as the iPhone, or by individuals who have

manually located their photos on a map. Additionally, the geography of these photos has

also been described by their owners as freeform text, perhaps by naming nearby locations,

or by describing features or activities captured by the photo. There is complexity and sub-

tlety here, and as we shall see, beauty can emerge when we try to visualize this to

enhance our knowledge of the interplay between location and descriptions of place.

When writing beautiful code, it is frequently the case that the code has a very specific pur-

pose, such as sorting a list, solving a system of linear equations, or performing a Fourier

transform. The beauty of the code can result from the effectiveness in meeting that pur-

pose (Kolawa 2007). When dealing with beautiful data, such a purpose might not be quite

so precise. Exploration of data is an important part of the scientific endeavor and can lead

to insights, hypotheses to be tested, and validation of prior theory. Beautiful data warrants

exploration. It contains patterns, structures, and anomalies that are not immediately

apparent but emerge as reward for mining the hidden depths within. In our work we

build upon two long traditions for exploring data in a visual manner. Cartography has

developed robust techniques for visually representing geographic data to communicate

information and support knowledge discovery. Over the centuries it has innovatively and

successfully combined the objective rigor of science with more subjective skills of interpre-

tation design and critique. Maps themselves can be things of beauty as well as their refer-

ents. Information visualization encapsulates the process of visual exploration of data that

may not have any geographic component, through the design and generation of graphs,

charts, and associated interactions. Here we report on approaches to exploring beautiful geo-

graphic data that combine elements of cartography and information visualization.

Beauty in Data: Geograph
We consider Geograph a beautiful data set for a whole host of reasons. An engaging com-

bination of valued data source, online community, game, and motivation for exploring

the countryside, this rapidly expanding archive of georeferenced and annotated photo-

graphs of the landscape of the British Isles gives ample scope for considering beauty in the

big picture and in myriad small details.

Originally conceived by Gary Rogers, and supported by Paul Dixon, Barry Hunter, and a

growing team of moderators, Geograph is an effort to collect “geographically representative

photographs and information” (Geograph 2009) for each 1 km grid cell in Great Britain and

T H E G E O G R A P H I C B E A U T Y O F A P H O T O G R A P H I C A R C H I V E 87

Ireland. At the time of writing, this process has involved over 8,500 contributors collecting

and documenting more than one and a quarter million photographs, with over 90% of the

244,000 1 km grid squares in Britain “geographed.” Figure 6-1 provides an example. This

number will undoubtedly have been augmented over time—the British countryside is being

geographed as you are reading!

Contributors to Geograph are free to select their representative view, but the geographic fea-

tures should be indicative of the typical human and physical geography in the 1 km grid cell:

[T]hink what a child looking at a map in a geography lesson might find useful when try-

ing to make sense of what the human and physical geographical features in a given grid

square actually look like (Hawgood et al. 2007).

We see beauty in various aspects of Geograph:

• The objective of producing an open archive of purposefully selected and annotated

images has an engaging blend of simplicity (the idea), complexity (the process, which is

structured in a manner that also has some beauty), and utility (the resource). The orga-

nization and devotion of those running the project to maintain the collection and make

it usable are admirable and impressive.

• There is beauty in the “collective effort” approach used in generating the archive from

the “bottom-up” and the way in which technology and person-power are used to

achieve the aims. The collective beauty in the collaborative “citizens as sensors” (Good-

child 2007) nature of the project, which relies upon common understanding and broad

cooperation with little individual gain, is considerable.

F I G U R E 6 - 1 . Minor road near Aberuchill. Bioran Dalchonzie in the distance. This is the 1,000,000th image to appear on

the Geograph website (http://www.geograph.org.uk/photo/1006884). Image © Dr. Richard Murray; licensed for reuse

under a Creative Commons License (http://creativecommons.org/licenses/by-sa/2.0/). (See Color Plate 12.)

88 C H A P T E R S I X

• The implementation and presentation of the idea in an engaging, accessible, and stimu-

lating website that provides access to the information in so many ways also embodies

aesthetic and technical qualities.

• The maps generated from geographs at a range of scales to provide insights into the

various processes involved in generating the collection have aesthetic quality (see, for

example, Figure 6-2). These include a number of innovative cartographic representa-

tions and interactive features that provide access to this mass of information and

change as the collection is updated, such as geograph densities and distribution maps of

contributors and their contributions.

• The individual contributions have aesthetic appeal as representations of human and

physical landscape determined by those who inhabit and visit the locations depicted.

This is formalized by the Geograph community, as candidates for the geograph of the

year (GOTY) are chosen on a weekly basis from the photographs contributed.

Geograph is somewhat typical of the broad user-generated georeferenced data sets that are

becoming available, but these various qualities make it particularly notable. There are real

opportunities for exploring the Geograph data and generating new knowledge that may

further accentuate its beauty. We provide some examples in the sections that follow that

describe some of our visual exploration of the geographies represented in the collection.

F I G U R E 6 - 2 . Example Geograph photomosiac of the Norfolk coast. Each photo is mapped at its geographic location

and represents a 1 km square of the landscape. Images licensed for reuse under a Creative Commons License (http://

creativecommons.org/licenses/by-sa/2.0). (See Color Plate 13.)

T H E G E O G R A P H I C B E A U T Y O F A P H O T O G R A P H I C A R C H I V E 89

Visualization, Beauty, and Treemaps
Before we delve into the Geograph archive itself, it is worth considering some of the moti-

vations and visual techniques that might be usefully applied to exploring the collection.

The cartographic tradition has understandably focused predominantly on static products

that are reproduced using traditional media. Most of our work in the last 15 years has

been interactive—drawing on digital technologies to reconsider the nature and role of

maps and redeploying them as responsive graphical means of querying for exploration

(Fisher 1998). We have aimed to ensure aesthetic quality in the smoothness of the inter-

actions, and satisfaction, by developing informed views and dynamic behaviors that pro-

voke thought and discovery. However, some of our recent work has re-emphasized data

density and focused back on the fundamental cartographic design decisions associated with

generating layouts and symbolism (data encodings) that use space efficiently and effec-

tively. This work has been partially motivated by hardware advances that have made pro-

cessing and displaying large data-dense graphics more feasible. It is, in effect, a response to

the need for new effective and aesthetically pleasing methods for graphically representing

the kinds of larger data sets that are increasingly available as we follow Tufte’s advice to

“present many numbers in a small space” (Tufte 1983).

What Is Beauty in Visual Data Exploration?

We regard beauty to be a subjective quality associated with some stimulus that results in a

positive perceptual experience. In visualization, beauty is often in the eye of the developer

or designer. Apposite calls have been made to the community to formally critique visual-

ization work in an effort to consider aesthetics more collectively (e.g., Kosara 2007). How-

ever, until a usable body of knowledge is developed, we are reliant upon broad principles

and rules of thumb when developing aesthetically pleasing graphics.

A number of these are used in Beautiful Code (Oram and Wilson 2007) and can be usefully

applied to data visualization. For example, Brian Kernighan (Kernighan 2007) identifies

characteristics of beautiful code that include compactness, elegance, efficiency, and utility,

and informally quantifies compactness by indicating, “Ideally the code would fit onto a

single page.” Yukihiro Matsumoto deems code to be less than beautiful if it is difficult to

understand, and has used this principle to inform his approach to developing the Ruby

programming language (Matsumoto 2007). But “difficult to understand” should not be

confused with complexity. A simple graphic that is easy to understand but shows very lit-

tle data is not beautiful in the way we define it here. Rather, beautiful data visualization

shows things that are complex but in a way that makes them easier to understand—per-

haps by focusing attention on certain aspects of the data or emphasizing particular per-

spectives. It may follow Kernighan’s principle of aiming to do so on a single “page.”

In our case, we endeavor to use space efficiently to show multiple (spatial and other) rela-

tionships by augmenting and synthesizing existing approaches to cartography and infor-

mation visualization. We seek to do so in ways that are compact enough to fit onto a

single page or screen and sufficiently elegant to reveal both overall structure (Gestalt) and

local detail (details on demand) concurrently. We aim to design and develop interpretable

90 C H A P T E R S I X

and useful graphics in the context of the needs of any particular data set with real users

who can understand and use the graphics to address known information needs.

Tufte (1983) conceived of the notion of the data/ink ratio—a heuristic that encourages the

designer of a graphic to evaluate the proportion of the ink on a page that is used directly to

represent data. The larger the ratio, the more efficient is the use of graphic symbolization

and the greater the depth of information that can be revealed. This metric of form and

function may contribute to the beauty of a data graphic. We can likewise consider the idea

of data/location ratio—the degree to which the position of a graphical element on a page

reflects characteristics of the data it represents. Traditional cartographic maps score highly

in this respect since the location of a symbol on the page usually identifies the geographic

location of its referent. Many information graphics are perhaps less efficient in this regard,

as are some maps (such as cartograms and schematics), often for good reason. We would

argue that the efficient use of space is an important aspect of beautiful visualization in that

it supports the process of visual discovery of geographic (and other) patterns. This is

increasingly true in the context of the massive volumes of data with a geographic compo-

nent, such as large volunteered collections. In short, there is beauty in using and repre-

senting space efficiently—particularly to reveal geography.

Making Treemaps Beautiful: A Geographic Perspective

Treemaps are space-filling representations of hierarchies (Shneiderman 1992), as seen in

Figure 6-3. Like many beautiful ideas, the treemap is based on an elegantly simple con-

cept. An item of data is represented as a rectangle. If that data item itself contains a collec-

tion of other data items (a defining feature of any hierarchy), each is represented as a

smaller rectangle that sits inside the “parent” rectangle. In turn, these smaller rectangles

can themselves contain even smaller “children” that sit inside them, and so on. The rect-

angles are arranged such that they fill the entire graphical space without any gaps. Each

rectangle, or node, can be sized according to some characteristic of the data it represents. It

can also be colored in response to the data and be labeled in some meaningful way. All

rectangles are visible; they do not overlap. There is elegance in the compactness of the rep-

resentation (a single colored and labeled rectangle can simultaneously show three or more

independent characteristics of some data). The simple geometric form of each node (a

rectangle) lends itself to the representation of large data sets since a treemap can simulta-

neously show almost as many nodes as there are pixels on a screen. There is also some cogni-

tive elegance in that the semantic containment relationships of the hierarchy are represented

directly as geometric containments in the treemap (parent nodes enclose child nodes).

We saw opportunities for employing treemaps to represent large quantities of information

recorded as geographical and thematic hierarchies. And by constructing new hierarchies

we saw the possibility for the large numbers of records in the Geograph data set to be

explored in this way.

However, treemaps have been widely critiqued for a number of reasons. Ironically, the

aesthetic quality of treemaps has been criticized (Cawthon and vande Moere 2007),

although we would argue this is more a function of implementation than design per se.

T H E G E O G R A P H I C B E A U T Y O F A P H O T O G R A P H I C A R C H I V E 91

More significantly, the arbitrary placement of nodes in a treemap significantly lowers the

data/location ratio. Most existing treemap layout algorithms locate nodes in order to max-

imize their aspect ratios (making nodes as square as possible is important for aesthetics

and size comparison tasks) and to aid readability (maximizing horizontal linear continuity).

Very few are concerned with using graphical location to represent some aspect of the data.

As a result, treemaps contain linear discontinuities and arbitrary node placement (e.g.,

Figure 6-3). This counters established best practice in cartography and statistical graphics,

whereby locations on the plane are regarded as the primary means of representing rela-

tional information (Bertin 1983). Arbitrary location of nodes within treemaps fails to take

advantage of the “first law of cognitive geography” (Fabrikant et al. 2002), whereby near

things are regarded as more similar than distant things.

We saw scope for ordering nodes at all levels of a two-dimensional treemap according to

one- or two-dimensional orderings in the data (Wood and Dykes 2008). In doing so we

address one of the key problems associated with the treemap, namely that the primary

information-carrying dimensions are not fully utilized, by mapping one (or more) data

dimensions to them. In short, we use space within the treemap to represent one dimen-

sionally ordered or two dimensionally spatially arranged relationships in our data.

A Geographic Perspective on Geograph Term Use
The concept of place is a complex one that is not well described with simple latitude-

longitude coordinate pairs. It is more than simply location, in that it also says something

about the nature of features that create a sense of place. It can rely on intangible, subjective,

and sometimes contradictory characteristics that traditionally are not well represented

in digital data sets. Volunteered, or community contributed, geographic information

F I G U R E 6 - 3 . Two simple treemaps. (Left) The placement of 20 ordered nodes using a conventional squarified layout

(colored by order). Note the inconsistent use of location to represent the ordered sequence 1 to 20. (Right) A spatial

treemap where nodes are placed according to their approximate geographic location (colored by category).

92 C H A P T E R S I X

such as the personal descriptions of place available in Geograph gives us access to new and

multiple perspectives. These may reflect a range of viewpoints and enable us to begin to

consider alternative notions of place as we attempt to describe it more effectively.

Consequently, Ross Purves and Alistair Edwardes have been using Geograph as a source of

descriptions of place in their research at the University of Zurich. Their ultimate objective

involves improving information retrieval by automatically adding indexing terms to geo-

referenced digital photographs that relate to popular notions of place, such as “mountain,”

“remote,” or “hiking.” Their work involves validating previous studies and forming new

perspectives by comparing Geograph to existing efforts to describe place and analyzing

term co-occurrence in the geograph descriptions (Edwardes and Purves 2007).

A popular approach in the literature involves identifying basic levels or scene types

through which place is described. Such summative descriptions of place have been tradi-

tionally derived through human subject tests. These are difficult to coordinate and usually

involve small numbers of participants, making it hard to generalize from the results or

repeat the experiments. Edwardes and Purves evaluated the way in which Geograph con-

tributors use and rank scene types such as mountain, hill, valley, river, rock, lake, canyon, cliff,

ocean, and cave, and found significant correlations with the terms reported in participant

studies and the degree to which they are used (Edwardes and Purves 2007).

With the terms used in the collection validated to an extent, we collectively identified

opportunities for exploring the nature, structure, and geography of some of these relation-

ships in Geograph. In particular, we wished to understand the relationship between photo-

graphic content, photographic location, and textual description of place as recorded in

contributors’ annotations of their photographs. A visualization approach seemed appropri-

ate, and the treemap techniques enabled us to explore these characteristics of Geograph.

The examples that follow document some of the ways in which spatial treemaps and other

graphics were used in our exploration of Geograph as we developed our shared knowl-

edge of the collection to inform our understanding of the descriptions of place.

Representing the Term Hierarchy

The Geograph archive was processed in April 2008 when approximately 750,000 images

had been geolocated with a title and textual description. We focused on images that

related to six basic levels, or scene types, deemed particularly interesting through

Edwardes’s and Purves’s analysis: beach, village, city, park, mountain, and hill. For each of

these scene types we then selected the most popular descriptive terms occurring in three

different facets: activities (predominantly verbs), elements (predominantly nouns), and quali-

ties (predominantly adjectives). This resulted in a term co-occurrence hierarchy of six

scene types, each containing three facets, each containing a number of descriptors associ-

ated with the scene type. A treemap reflecting this hierarchy contains nodes for each of

the co-occurrences of our selected scene types with a popular descriptor and reveals some

structure in the descriptions used in Geograph. The treemap shown in Figure 6-4 uses an

T H E G E O G R A P H I C B E A U T Y O F A P H O T O G R A P H I C A R C H I V E 93

ordered squarified layout algorithm to optimize shape and locational consistency of nodes

(Wood and Dykes 2008). Leaf nodes (individual geographs) are of unit size.

Each node in Figure 6-4 is colored using an inherited random scheme where scene types

are randomly colored, and children (facets, descriptors, and the geographs themselves)

inherit this color with a minor mutation. Although the colors have no independent mean-

ing, this coloring scheme is used to emphasize the hierarchical structure of the classifica-

tion. This combination of layout and color encoding helps us in our exploration of the data

by revealing structure and encouraging visual comparison. For example, we can see that

hill is a more popular term than park, village, city, beach, or mountain as it occupies a larger

area in the treemap. The elements facet is consistently more popular than qualities or

activities across these scene types. The activity facet is particularly strongly associated with

park. The descriptor road dominates four of the scene types, but not beach or mountain.

Descriptors such as valley and path are used more frequently with hill than mountain, although

in relative terms these descriptors are more commonly related with mountain than hill. Loch is

used more frequently with mountain than hill. Footpath is popular as a descriptor of hill but not

mountain. One important aspect of the beauty of this kind of data-dense information is that

many other relationships are displayed concurrently and might equally be reported. We

could go on and describe our pictures in many more than 1,000 words.

F I G U R E 6 - 4 . Treemap of terms occurring in geograph titles and comments for six selected scene types. Node sizes

represent term occurrence. Colors emphasize the scene type/facet/descriptor hierarchy with an inherited random

scheme. Layout uses an “ordered squarified” approach to maintain square shapes amongst nodes. (See Color Plate 14.)

94 C H A P T E R S I X

We have taken a number of design decisions here based upon our experience of interpret-

ing various Geograph graphics. A useful alternative involves employing a “slice and dice”

layout algorithm. The result is a mosaic plot that makes the proportions of each scene type

and facets within them easier to relate, as lengths are compared rather than areas (Figure

6-5, top). However, the elongated nodes that result mean that labeling and size estimation

between descriptors are more difficult. A compromise involves applying the ordered

squarified algorithm to arrange leaf nodes (Figure 6-5, bottom). Experimenting with lay-

out and color in this way at different levels of the hierarchy helps us emphasize and

explore the various salient qualities of the data set.

F I G U R E 6 - 5 . Treemap of terms occurring in geograph titles and comments for six selected scene types. Node sizes

represent term occurrence. Colors emphasize the scene type/facet/descriptor hierarchy with an inherited random

scheme. Layouts uses a “slice and dice” approach to aid comparison of magnitudes (top) and “slice and dice/ordered

squarified” approaches to aid legibility of labels (bottom). (See Color Plate 15.)

T H E G E O G R A P H I C B E A U T Y O F A P H O T O G R A P H I C A R C H I V E 95

Representing Absolute Location with Color

While the treemaps in Figures 6-4 and 6-5 provide some indication of how place is

described, they say little about its relationship with location. We explored a couple of ways

of adding locational information to the treemap. The first involved using color to provide

an indication of absolute location within the British Isles. Geograph locations are stored as

projected coordinate pairs with “eastings” and “northings” recording the distances to the

east and north of the origin of the British National Grid.

The challenge was to represent the two dimensions of photo location (easting and north-

ing) with a color that distinguished it from other photos in different locations. Most color

spaces are defined using three components (for example, red, green, and blue; or hue, sat-

uration, and value), so selecting just two components to represent coordinate pairs is

problematic. Additionally, most color schemes are perceptually nonuniform; in other

words, the perceived similarity of two colors a fixed distance apart from each other varies

across the color space. We therefore chose to use the CIELab color model, which provides

a more perceptually consistent color gamut. By representing eastings and northings of

each photo’s location with the a and b components of the color space, we were able to

produce a geographic map of color where southwesterly locations were colored orange,

southeasterly locations were green, northeasterly were blue, and northwesterly were pur-

ple. Central locations tended toward brown, and the degree of color similarity between

two nodes provided an indication of locational similarity of the photos they represent.

Figure 6-6 colors nodes in the ordered squarified treemap (compare with Figure 6-4) in

this way.

Some locational influences on descriptions of place are apparent from this view that may

inform our exploration of the Geograph archive from a spatial perspective. For example,

track, summit and cairn, exhibit different geographies to downs, chalk, barrow, and junction

within hill; mountain, beach, and village have different locational characteristics; activities

and qualities have distinct geographies within beach. Some of the complexities associated

with the relationship between location and place are also apparent.

Representing Relative Location with Spatial Treemaps

The use of color to show location has some aesthetic appeal and provides some insight into

location-place relationships, but it is limited in its effectiveness. In particular, it requires of

the reader a memory of how color is related to location. The treemap shown in Figure 6-6

also fails to use node position in any meaningful way. So instead, we can map the geo-

graphic location of each photo to node position within the treemap such that northerly

photos appear toward the top of an enclosing node’s space, westerly toward the left, and

so on. Because the treemap will fill the space with nonoverlapping rectangles, we cannot

provide an exact spatial mapping of location, but this form of layout does give an indication

of relative location of nodes and so increases the data/location ratio. If we are concerned with

exploring the locational aspects of the place descriptors, we can use CIELab coloring to

emphasize absolute location, or we can represent some other aspect of the data with color

96 C H A P T E R S I X

(such as term importance) while retaining a strong cartographic metaphor. Figure 6-7 retains

our ordered squarified layout to show the term hierarchy but rearranges nodes within each

descriptor according to geography.

Here, the pinks, purples, and browns in mountain show us that this term is used in the north

and west, although terms such as pen, trig, cwm, and black defy this pattern, reflecting their

distinct geography. The vivid colors of beach reflect the peripheral, coastal nature of this

scene type, whereas the more muted colors of city show that this is a more central base level.

Figure 6-8 goes one step further by arranging all nodes using the spatial ordering

approach. As such, it therefore shows the geography and hierarchy of our six scene types.

Representing Location Displacement

Although we can identify some spatial patterns in our hierarchical structure, the degree to

which nodes have been displaced from their true geographic location in order to be tessel-

lated within the treemap space is not always clear. CIELab coloring can give some indica-

tion of this displacement; note the different colors within the quality and activity facets in

beach or the discontinuities in city / element / hall and hill / element / farm in Figure 6-8. We

can improve things further, however, by indicating graphically how a photo or group of pho-

tos has been translated from geographic coordinates during the tessellation. Doing so follows

the advice of Skupin and Fabrikant (2003), who recommend that cognitively plausible car-

tography should use appropriate methods for communicating this form of positional error.

F I G U R E 6 - 6 . “Ordered squarified” treemap with colors showing absolute locations through a CIELab color space in

which perceived differences in color relate closely to differences in location. (See Color Plate 16.)

T H E G E O G R A P H I C B E A U T Y O F A P H O T O G R A P H I C A R C H I V E 97

Figure 6-8 superimposes a collection of lines on the treemap. These join each node’s

treemap position to its geographic location—the longer the line, the greater the displace-

ment. See, for example, the displacement vectors associated with the quality and activity

facets in beach, which confirm the different geographies that we have already noted

despite their juxtaposition in the spatial treemap. The design goal behind the creation of

these lines was to provide additional spatial context to the treemap while retaining the

ability to explore the term hierarchy. Thicker lines are used to show scene type displace-

ments rather than facet displacements in Figure 6-8. Very thin lines were thus used when

showing geograph displacement, as many hundreds of thousands of lines may be drawn

between geographic photo locations and positions of leaf nodes in the treemap. Figure 6-9

provides an example in which displacement vectors are curved more sharply at their node

position end than their geographic location end. This helps to emphasize any spatial clus-

tering of nodes, as is the case in many instances in Figure 6-9, as well as providing an

overview of the general trends in displacement.

This concurrent view of term hierarchy and both relative and absolute geography allows

us to consider the geographies that we noted of track, summit, and cairn in hill and compare

them with those of downs, chalk, barrow, and junction simultaneously.

This spatial arrangement may draw our attention to new relationships. For example, bridle-

way, path, and track have similar functions but different geographies when used with hill;

fishing and cricket are activities with different geographies in village; compare chapel and

F I G U R E 6 - 7 . “Ordered squarified” treemap with colors showing absolute locations through a CIELab color space. Leaf

nodes within descriptor nodes are arranged to relate to locations using a spatial ordering algorithm. (See Color Plate 17.)

98 C H A P T E R S I X

church in village, or golf with hill to golf with park. Figure 6-10 shows some elements of

beach in close-up, allowing us to see, amongst other things, aspects of the coastline of Brit-

ain through the clustered absolute locations of tide, the southern emphases of path and

cliffs within beach, and particular geographic clusters associated with beach / element / pier in

the southeast and beach / element / harbour in the central northwest.

Beauty in Discovery
We consider spatially ordered and spatial treemaps of large hierarchical data sets that have

high data/location ratios to be aesthetically pleasing, and offer the figures presented in this

chapter as candidate beautiful depictions of beautiful data. But things of beauty should be

lucid, usable, and ultimately satisfying as well as elegant. Matsumoto (2007) expresses this

in the context of computer code through his belief that beautiful code is readable. Just as

maps make complex geospatial data readable in a fit-for-purpose manner that enables

multiple spatial relationships to be determined and tasks such as navigation, geographic

comparison, and pattern detection to be achieved, so our efforts aim to make analytical

sense of the geography of the language of Geograph through readable graphics. Can we

read Geograph? We contend that these and other graphics mean that we’re well on our

way toward interpreting some of the complexity of this rich and beautiful example of the

kinds of geospatial data sets that are emerging, and using the kinds of relationships between

description and location identified through our analysis to act upon this knowledge.

F I G U R E 6 - 8 . Spatial treemap of terms occurring in geograph titles and comments for six selected scene types. Node

sizes represent term occurrence, and colors represent absolute spatial locations with CIELab scheme. Displacement

vectors show absolute locations of non-leaf nodes (scene types, facets, and descriptors). (See Color Plate 18.)

T H E G E O G R A P H I C B E A U T Y O F A P H O T O G R A P H I C A R C H I V E 99

The spatial relationships depicted in these views are dependent upon aspect ratios and the

average locations of nodes within leaves. We may be interested in more precise geographies

than those described here, and the data-dense treemaps have been useful in selecting candi-

date facets and descriptors for more traditional mapping. Maps of term co-occurrence

derived through the treemaps have enabled us to identify quantifiable spatial differences

in term use. For example, we have found that valley is used with hill more frequently than

might be expected in the south and southwest, while summit is used more frequently in

the north. These relationships persist at different scales and when using alternative viable

means of term selection from Geograph. They may reflect a bias in selecting particular

aspects of the landscape to be recorded, regional geography, linguistic differences, personal

preferences of individuals contributing in particular places, or likely a combination of

these factors. Whatever the explanation, our reading of the treemaps draws attention to

these geographic characteristics of some places in the light of others. Also note the some-

what rustic terms used to describe village here. These trends may not be due to conscious

bias, but may relate to the selection of aspects of landscape that are aesthetically pleasing

for Geograph—meaning that our reading of the data reinforces our contention that we are

dealing with beautiful data. We intend to continue our exploration and analysis of the

geography of such terms with maps and more formal spatial methods. These and other

aspects of the geography of user-selected descriptive terminology are contributing to the

development of an ontology for describing place.

F I G U R E 6 - 9 . Spatial treemap of terms occurring in geograph titles and comments for six selected scene types.

Displacement vectors show absolute locations of leaf nodes (co-occurring terms) and provide information about spatial

clustering and spatial trends in displacement required to meet the space-filling objectives of the treemap. (See Color Plate 19.)

100 C H A P T E R S I X

F I G U R E 6 - 1 0 . Spatial treemap of terms occurring in geograph titles and comments for selected element descriptors in the

beach base level. Displacement vectors show absolute locations of leaf nodes in this enlarged section of Figure 6-9. (See

Color Plate 20.)

T H E G E O G R A P H I C B E A U T Y O F A P H O T O G R A P H I C A R C H I V E 101

Our graphics and our exploration are incomplete. We are investigating the effects of sys-

tematic bias in community-contributed geographic information and developing strategies

to mitigate this. We are developing notations to describe the visual design space and inter-

active applications through which this can be explored. We are yet to consider whether

the geographically varying relationships that we are able to identify in Geograph are con-

sistent over time. Nevertheless, the methods described here help us move toward achiev-

ing knowledge…against all the odds when the size, structure, diversity, and complexity of

data are considered. But who better to contribute to our understanding of place than a

large group of volunteers who inhabit places working collectively? And how better to

explore the notions of place contained within their descriptions than through carefully

designed multivariate graphics that reveal structure and aid discovery?

Reflection and Conclusion
We have argued that the beauty in data lies in its depth. Beauty emerges as previously

hidden structures and patterns are revealed. These patterns prompt new thoughts and

questions about the data. They inspire. They encourage exploration. They provide insight.

Where they are spatial, geographic beauty may emerge.

Beautiful data encourages beautiful visualization, as it also encourages exploration and

rewards the viewer who explores. Visualization is particularly apt for exploring geographic

patterns, as centuries of cartography have demonstrated.

The examples we present here show how we can use beautiful data such as the geographs

of Geograph to address the description of place with a view to using such descriptions in

an applied context for information management and retrieval. Sophisticated and data-

dense graphics with aesthetic appeal are an important part of this process.

We broadly consider beauty to be a characteristic of an entity that provides pleasure, mean-

ing, or satisfaction. In terms of data and its representation, various aspects of Geograph have

these qualities. Our visualization of some facets of Geograph in space-filling graphics with

high data/location ratios is innovative, creative, and has a problem-solving basis. It has helped

inform our colleagues’ work and opened new analytical avenues. We would put forward

these data-dense depictions of the people’s descriptions of the human and physical geography

of the British Isles in time and place as being among the most beautiful that we have created.

Acknowledgments
We gratefully acknowledge Barry Hunter and contributors to Geograph British Isles (http://

www.geograph.org.uk/credits/2008-04-31), whose work is made available under the following

Creative Commons Attribution-ShareAlike 2.5 License (http://creativecommons.org/licenses/

by-sa/2.5/).

Ross Purves’s and Alistair Edwardes’s work on Geograph is also gratefully acknowledged.

This has been undertaken as part of the project TRIPOD, supported by the European Com-

mission under contract 045335.

http://www.geograph.org.uk/credits/2008-04-31
http://www.geograph.org.uk/credits/2008-04-31
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

102 C H A P T E R S I X

References
Andrienko, G., N. Andrienko, J. Dykes, S. Fabrikant, and M. Wachowicz. 2008. “Geovisu-

alization of dynamics, movement and change: key issues and developing approaches in

visualization research.” Information Visualization, v. 7: 173–180.

Bertin, J. 1983. Semiology of graphics (W.J. Berg, trans.). Madison: University of Wisconsin

Press. (Original work published 1973.)

Cawthon, N., and A. vande Moere. 2007. “The Effect of Aesthetic on the Usability of Data

Visualization,” Proceedings of the 11th International Conference Information Visualiza-

tion, IEEE Computer Society Washington, DC: 637–648.

Edwardes, A., and R. Purves. 2007. “A theoretical grounding for semantic descriptions of

place.” M. Ware and G. Taylor (eds.). LNCS: Proceedings of 7th Intl, Workshop on Web

and Wireless GIS, W2GIS: 106–120.

Fabrikant, S., M. Ruocco, R. Middleton, D. Montello, and C. Jörgensen. 2002. “The first

law of cognitive geography: Distance and similarity in semantic space.” Proceedings of

GIScience 2002: 31–33.

Fisher, P.F. 1998. “Is GIS hidebound by the legacy of cartography?” The Cartographic Jour-

nal, v. 35: 5–9.

Geograph. “Geograph British Isles - photograph every grid square.” http://www.geograph.co.uk/

(accessed April 9, 2009).

Goodchild, M. 2007. “Citizens as sensors: the world of volunteered geography.”

GeoJournal, v. 69: 211–221.

Hawgood, D., D. Dunford, R. Farrow, B. Hunter, and P. Mayes. “Geograph or supplemental.”

http://www.geograph.org.uk/article/Geograph-or-supplemental/ (accessed April 9, 2009).

Kernighan, B.W. 2007. “A Regular Expression Matcher,” in Beautiful Code: Leading Pro-

grammers Explain How They Think, ed. Andy Oram and Greg Wilson, 1–9. Sebastopol, CA:

O’Reilly.

Kosara, R. 2007 “Visualization Criticism-The Missing Link Between Information Visualiza-

tion and Art.” Proceedings of the 11th International Conference Information Visualiza-

tion, IEEE Computer Society Washington, DC: 631–636.

MacEachren, A.M., and M.J. Kraak. 2001. “Research challenges in geovisualization.” Car-

tography and Geographic Information Science, v. 28: 3–12.

Matsumoto, Y. 2007. “Treating Code as an Essay,” in Beautiful Code: Leading Programmers

Explain How They Think, ed. Andy Oram and Greg Wilson, 477–481. Sebastopol, CA:

O’Reilly.

Oram, A. and G. Wilson, eds. 2007. Beautiful Code: Leading Programmers Explain How They

Think. Sebastopol, CA: O’Reilly.

http://www.geograph.co.uk/
http://www.geograph.org.uk/article/Geograph-or-supplemental/

T H E G E O G R A P H I C B E A U T Y O F A P H O T O G R A P H I C A R C H I V E 103

Shneiderman, B. 1992. “Tree visualization with tree-maps: 2-d space-filling approach.”

ACM Transactions on Graphics (TOG), v. 11: 92–99.

Skupin, A. and S. Fabrikant. 2003. “Spatialization Methods: A Cartographic Research

Agenda for Non-geographic Information Visualization.” Cartography and Geographic Infor-

mation Science, v. 30: 99–119.

Tufte, E.R. 1983. The Visual Display of Quantitative Information (First Edition). Cheshire, CT:

Graphics Press.

Wood, J. and J. Dykes. 2008. “Spatially Ordered Treemaps.” IEEE Transactions on Visualiza-

tion and Computer Graphics, v. 14: 1348–1355.

105

Chapter 7 C H A P T E R S E V E N

Data Finds Data
Jeff Jonas and Lisa Sokol

Introduction
NEXT-GENERATION “SMART” INFORMATION MANAGEMENT SYSTEMS WILL NOT RELY ON USERS DREAMING UP

smart questions to ask computers; rather, they will automatically determine if new obser-

vations reveal something of sufficient interest to warrant some reaction, e.g., sending an

automatic notification to a user or a system about an opportunity or risk.

An organization can only be as smart as the sum of its perceptions. These perceptions

come in the form of observations—observations collected across the various enterprise

systems, such as customer enrollment systems, financial accounting systems, and payroll

systems. With each new transaction an organization learns something. It is at the moment

something is learned that there exists an opportunity, in fact an obligation, to make some

sense of what this new piece of data means and respond appropriately. For example, does

the address change on the customer record now reveal that this customer is connected to

one of your top 50 customers? If an organization cannot evaluate how new data points

relate to its historical data holding in real time, the organization will miss opportunities for

action.

When the “data can find the data,” there exists an opportunity for the insight to find the

user.

106 C H A P T E R S E V E N

How data finds data is a statement about discoverability, the degree to which previous infor-

mation can be located and correlated with the new data. Discoverability requires the abil-

ity to recall related historical data so that an arriving piece of data can find its place, similar

to the way each jigsaw puzzle piece is assessed relative to a work-in-progress puzzle. Each

new puzzle piece incrementally builds upon what is knowable, at each given point in time

relative to the evolving puzzle picture. Often new pieces, although important to building

out the bigger picture, do not themselves bring new critical information. (On the other

hand, some pieces may change the shape of the puzzle in a way that warrants ringing the

bell—finding that one piece that connects the palm tree scene to the alligator scene.) It is

at this moment in time, when the new puzzle piece presents the opportunity to reshape

the picture, that discoveries are made. Real-time discovery replaces the need for users to

think up and pose the right question at just the right time.

Organizations that are unable to switch to the “data finds data” paradigm will be less com-

petitive and less effective.

The Benefits of Just-in-Time Discovery
Advanced information management systems that play this “data finds data” game will not

rely on users to dream up the correct, relevant, timely questions to ask computers. While

this technology will initiate new policy debates, such as which data will be permitted to

find which data and who is notified of what relevance, here are some examples of what a

“data finds data” system can do:

Guest convenience

After tossing and turning in bed all night in a hotel room, the guest finally decides at 7

a.m. to call for a late checkout and schedule a wake-up call at noon. Shortly after the

guest sinks into a deep sleep, disaster strikes when the maid carelessly knocks on the

door to clean the room. Regrettably for hotel travelers worldwide, this most basic

inconvenience occurs all too often. When the data finds the data, the late checkout and

wake-up call requests converge with maid scheduling information. This “data finds the

data” instance would trigger an automatic text message, notifying the maid not to clean

this room until after 2 p.m.

Customer service

With interest in a soon-to-be-released book, a user searches Amazon for the title, but to

no avail. The user decides to check every month until the book is released. Unfortu-

nately for the user, the next time he checks, he finds that the book is not only sold out

but now on back order, awaiting a second printing. When the data finds the data, the

moment this book is available, this data point will discover the user’s original query

and automatically email the user about the book’s availability.

Improved child safety

A parent wants to ensure that her young children are safe while walking to school. The

parent might search the community website to ensure that no registered sex offenders

D A T A F I N D S D A T A 107

are living along her children’s walking route to school. Will the parent check this web-

site every day, to determine whether a new address of an offender is added to a street

on the route? Using the “data finds the data” paradigm, should a new sex offender reg-

ister an address on the children’s walking route, the new data will immediately connect

with the earlier query. The parent will be instantly notified of the relevant discovery.

Cross-compartment exploitation

The government uses “compartments” to intentionally isolate data. Isolating data helps

prevent highly sensitive data from escaping. Despite new mandates for information

sharing, the traditional data protection practices for highly classified data prevent the

government from discovering that two such compartments are dealing with the same

subject or have subject overlap. An example of this might be one unit that is working

on counterterrorism and another on counternarcotics. The government has hundreds

of compartments, and the practicality of locating relevant data in another compartment

is remote, because one never knows who has what information. When the data finds

the data, the moment a record is added to the counternarcotics database of relevance to

the counterterrorism unit (e.g., data involving the same person), notification is imme-

diately published to the appropriate user.

Corruption at the Roulette Wheel
This is a true story where bad-guy data finds good-guy data—causing an unexpected dis-

covery and resulting in a surprise outcome.

In the mid-1990s, riverboat gaming became legalized in many new jurisdictions, Louisiana

being one of them. One of the challenges of a new gaming jurisdiction is the lack of avail-

able local employee candidates with deep gaming experience. New jurisdictions must

therefore train the local workforce in a wide range of specialty job categories, ranging from

dealers to surveillance room operators. Bossier City, Louisiana is one such community that

had to make the transition from no casino business to casino riverboat operations.

Today is like any other day in any other casino. The dealers are watching the players. The

floor supervisors are watching the dealers and the players. The casino manager is watching

the floor supervisors, the dealers, and the players. And the surveillance room is watching

everyone—even the casino executives. The surveillance room has an obligation to watch

gaming transactions, not only to protect the house but also to protect the customers. Sur-

veillance focuses both on gambling transactions as well as evidence of other criminal activ-

ity. For example, a purse-snatcher is bad for business because he interferes with the

customer experience.

Surveillance is the last line of defense.

Hundreds of cameras (thousands in the Vegas mega-casinos) are piped into a remark-

ably tiny surveillance room. Twenty, thirty, maybe forty monitors cover an entire wall

like a scene out of CSI. So how is it that only a few operators cleared for access to this

room make sense of this information overload? Answer: tripwires and attentive browsing.

108 C H A P T E R S E V E N

Tripwires come in many forms, ranging from a tip on a hotline to a floor supervisor asking

for the surveillance room to evaluate the play of a customer (e.g., to determine whether

she is counting cards).* On this day, the surveillance operator is browsing—performing

what might be called a random audit—zeroing in on one table after another, watching a

short while to see if anything seems out of place, and then moving on.

Wait! What is that? Can’t be. The attentive surveillance operator has just observed a player

blatantly cheating on the roulette table. Today the observed scam is known as “past post-

ing”—a player who is placing bets after the roulette ball has already landed in its number.

Past posting occurs when the player notices the ball has landed on a number (e.g., 32) and

seeing this outcome, quickly places a late, sure-to-win bet on that number. Unlike card

counting, which is legal but discouraged, “past posting” is actually cheating and is defi-

nitely illegal.

What is so peculiar today is that the table has one dealer and one player. Usually the “past

posting” scam involves a team of players—players working together to prevent the dealer

from detecting the late bet. Such team activity might involve two or more “players” at the

table who appear completely unrelated (e.g., acting like they don’t know each other).

After the ball finds its number, one player (e.g., a nice lady with a grandma disposition)

will reach all the way across the board as if to place a bet. The dealer, of course, says,

“Madam, it is too late to place your bet.” Nonetheless, the reach across the table (toward a

losing number) has enabled the other team member (say, a punk-rock-looking dude with

a mohawk) to place a late bet on the winning number—hidden from the view of the

dealer.

There is no such team on the table today. This is curious and warrants immediate inspec-

tion. The tapes are rewound. There it is! The dealer seems a bit distracted and misses the

past post event. At this point it would be common to start looking backward in time by

reviewing the earlier moments of the game. (And at the same time, maybe another room

operator will begin watching the game go forward live.) Bang! Again and again the player

makes late bets, the careless dealer missing this each time—and each time, paying the cus-

tomer for the win.

Security is notified. The troops mobilize. The player is confronted and detained for arrest

by law enforcement. How could this happen?

The dealer is obviously quite embarrassed. Being in a new jurisdiction, this employee is

also new to gaming and really only has had classroom training. The dealer makes it clear

that she has only heard about this type of scam. She then points out that security has

really done a good job today. She is very embarrassed and is quick to guarantee it will

never happen again on her watch.

Enter “data finds data.”

* Notably, the role of casino surveillance is intelligence. They report their observations and findings,
but perform no enforcement; enforcement is the role of the security department.

D A T A F I N D S D A T A 109

When the cheater is apprehended, he is required to identify himself. The cheater today,

like any other day, presents his name, address, phone number, and some other informa-

tion. This information is collected on a standard form, with a signature if they can get one,

and thereafter is data-entered into the corporate security arrest processing systems.

Of course, the cheater’s last name is not the same as the dealer’s; that would make life too

simple. The address is also not that of the dealer. The phone number, however, happens to

be the same as the phone number that the dealer used on her employment application! At

this exact moment that the arrest information is presented to the arrest processing system,

a secondary system performing data finds data* makes this vital discovery and produces an

immediate alert that basically says, “Employee #5764 has the same phone number as

Arrestee #44-00321!”

Long story short, the dealer is confronted, she confesses, and they are both processed and

handed over to law enforcement for prosecution.

To be clear: the users did not take identity attributes (e.g., name, address, phone number)

of the “past posting” cheater and attempt to search the wide array of operational systems

(call this a federated search). The applicant, employee, loyalty club, and arrest processing

systems, among others, cannot even be searched by address or phone number—they were

not designed for that.

Using a “data finds the data” environment, the users do not have to proactively search or

pose relevant questions. The users in the security department enter what they have

learned into their system, and this new information is then assessed against other enter-

prise information assets. The new information is found to relate to existing data, and this

relationship meets a prespecified condition of interest: when a “bad” guy is related to an

employee. Because this condition is met, an alert is triggered because the bad guy and the

employee share a phone number (thus, bad guy knows employee). If the cheater arrest data

had perhaps found an association with a hotel visitor of three years ago, this noninteresting

discovery would not have resulted in an alert.

To drive this point home, let’s now imagine the phone number provided by the “past

poster” had no relationship to that of the dealer. In this case, no alert would have been

produced. The dealer may have been questioned with some suspicion, but there simply

would not be enough evidence to make any claim. Might corporate security have opened

an investigation of the dealer, or hired a private investigator to determine whether these

two individuals were in fact close friends? Who knows?

But what if? What if the phone number does not match and no connection is made? The

dealer continues to deal. Time marches on. What if, six months later, the dealer changes

* This technology, formerly known as Non-Obvious Relationship Awareness (NORA), was devel-
oped by Systems Research & Development (a company founded by Jeff Jonas) for the Las Vegas
gaming industry. SRD has since been acquired by IBM and is now part of IBM’s Entity Analytics
group. Some additional information is available here: IEEE Paper: Threat & Fraud Intelligence – Las
Vegas Style (http://jeffjonas.typepad.com/jeff_jonas/2006/11/ieee_paper_thre.html).

http://jeffjonas.typepad.com/jeff_jonas/2006/11/ieee_paper_thre.html

110 C H A P T E R S E V E N

her home address in the employment system—and the new information is the same as the

cheater’s address? How would the organization know this? In truth, no organization will

ever know this unless it can play this important game called “the data finds the data.” The

moment this new information connects the dealer with the closed case, such a system

detects an alert condition: bad guy related to an employee.

Alerts, by the way, do not necessarily mean there is criminal activity. Alerts do, however,

play an important role in focusing an organization’s finite investigatory resources—in this

case, a condition of sufficient interest to warrant a closer (human) look.

Other examples: this riverboat casino operation also found a scam involving a marketing

person who figured out a system hack to cash-back comp (a marketing activity whereby

the more you play, the more points you get, and points can be redeemed for cash!) his

roommate. And in another case, it discovered that the person pulling out the “car a day”

winner ticket happened to “select” her sister (of a different last name), with the family

members acting as if they had never met.

All three of these scams were revealed as the data became known using “data finds

data”—and all three scams were detected in the first 90 days of operation!

The reason why data finds data is essential is that the order in which information arrives is

uncertain. Systems and processes that take the order of events for granted have a fatal

flaw: out-of-order facts may provide the organization with important knowledge that

never gets acted upon. More about this later.

One large retailer with thousands of physical storefronts across the United States analyzed

its historical data holdings and was shocked to discover that two out of every thousand

employees had in fact already been arrested for stealing from them. Worse yet, these

employees were caught stealing from the same store that hired them! Despite the order in

which the data is presented, the moment the enterprise has such evidence there is no time

to waste. The store should know this immediately.

Traditional remedies to address out-of-order data points are cumbersome. How can corpo-

rate security take advantage of new enterprise data that reveals an employee may be a

known shoplifter? When should updates to an employee record in the human resource

system cause corporate security to reevaluate all its earlier investigations? How can the re-

evaluation be structured so that the organization can’t miss instances when new or modi-

fied records in the internal investigations database are related to employees? One strategy

is to periodically test the investigations database against the entire employee database.

Another strategy is for corporate security to reinvestigate every employee on some recur-

ring basis. But both of these strategies will miss important discoveries because timing is

critical.

Even perfect algorithms running against perfectly reengineered operational systems (e.g.,

the human resources system and the internal investigations system) will still miss certain

discoverable events. What if the data needed to determine that two people are the same or

connected exists in an entirely unrelated system? For example, imagine a third record

D A T A F I N D S D A T A 111

arriving from an unrelated system, such as a loyalty club enrollment system, which reveals

a previously unknown linkage between a home address and a home phone number. What

kind of enterprise systems would be required to detect this condition, a condition we will

characterize as a nonobvious relationship?

Data finds data, including nonobvious relationships, requires that one first solve the prob-

lem of “enterprise discoverability.”

Enterprise Discoverability
When new information arrives in the organization, whether that is a new employee, a

change to an employee record, shoplifter information, or a loyalty club enrollment, one

needs to know what other organizational data relates to this information.

One common approach to enterprise discovery involves a technique known as “federated

search,” the passing of a query to every relevant operational system. As we shall demon-

strate, this does not work for data finds data systems. Discoverability, especially within

large-scale, real-time environments, necessitates directories.

Federated Search Ain’t All That
Organizations have numerous operational systems, each with its own dedicated business

function, tailored information structure, analytics, and reports. Secondary aggregations of

data are common, and include such things as data warehouses, operational data stores, and

data marts. There are countless information silos, each particular to its mission or function.

Traditional federated search systems involve the user querying the database of each silo

for relevant content. More sophisticated federated search systems use intelligent middle-

ware to broker the individual queries to each database, a model where the middleware

processes the query by engaging the myriad of information silos automatically and compil-

ing the findings, returning the collective results to the inquirer.

Federated search assembles cross-silo data “just-in-time,” at the point information is

needed. Although this type of federated search is applicable in some settings, it is not well

suited to high-performance enterprise discoverability, which is required to deliver on data

finds data.

There are two primary reasons federated search does not scale:

• Existing systems generally do not have the indexes necessary to enable the efficient

location of a record. Payroll systems, for example, will often have prebuilt indexes

(defined pointers into the data) to facilitate searches on employee number, tax ID

number, and name. Rarely would a payroll system have an efficient way to locate

records on address or phone number. Suppose our newly discovered gambling cheat

discloses his address and phone number. Our payroll system keeps track of all of the

employees’ phone numbers and addresses. (It has to send out paychecks, after all.) This

same payroll system would not be able to easily generate (if it can at all) a list of any

112 C H A P T E R S E V E N

employees who share an address or phone number with our previously mentioned

gambling cheat. Even if an index were created on employee phone numbers within the

payroll system, this still would not allow one to locate the emergency contact phone

number in this same system. If we can’t compare the gambling cheat’s identification

data against all relevant employee data, we miss the discovery of the connection between

employee and cheat.

If a field is not in an index, the method for locating a record in a database is known as a

“table scan.” In a table scan, the value being searched for is compared against every sin-

gle row in the table—the first record in the database, then the second, and so on.

Therefore, the larger the database, the longer each search takes, and the greater the

computational burden placed on the host system.

• To make matters worse, federated search requires recursive processing (some condi-

tions necessitate repeating steps), which is a nightmare for distributed query environ-

ments. Suppose you perform a federated query to discover enterprise records related to

a specific person—say, starting with a specific person’s name and date of birth. If the

federated query returns some new attributes for this person, e.g., a few addresses and

phone numbers, then you have learned something new. To be thorough, one should

leverage the new data learned about this person, i.e., initiate another enterprise-wide

federated query in case there are additional records that can now be located based on

these new data points. Now, what if this second federated query discovers another

address, a few more ways to spell the name, and an alias or two? To be thorough, each

time something is learned that might enable the discovery of a previously missed

record, the discovery process must perform another enterprise-wide federated query.

Here is a real use case that underscores this point. An organization (a commercial entity,

not a government) had 2,000 databases under its control. User queries were directed

across these databases to gather related records. Brilliant middleware designed to optimize

the search process was created over many years and at the cost of millions of dollars. This

very smart system would know which databases could process which queries, determine

the ideal order of database access, simulcast queries to all relevant sets, and assemble what

has been learned. However, no amount of engineering on this federated search approach

could overcome one serious design flaw: every time something was discovered (e.g., an

alias or a new phone number), the brilliant middleware had to reissue the queries to many

databases. This recursive process, being run on very large computers, eventually had to be

programmed to stop processing at eight minutes! Note that the next recursive inquiry

might have finally revealed an essential record.

But wait, eight minutes! This means a human or a system is now standing by, unable to

act in the moment, as no answer is available for all these minutes. However, when data

finds data, the data is the question. This now means every piece of new data arriving may see

up to eight minutes of latency before processing the next piece of data. Imagine how

impractical it would be to use a federated approach at the scale of hundreds or thousands of

federated queries a second (real transactional volumes) submitted across the enterprise net-

work, bouncing around and executing recursively through countless operational systems!

D A T A F I N D S D A T A 113

If these mentioned factors are not compelling enough, the death blow to federated search

is that all the systems that must be searched have to be physically switched on and avail-

able, not undergoing maintenance or backups, or in the middle of periodic nightly or

month-end batch processes. Connectivity must of course be fully operational as well. Con-

template these mandates in conjunction with an organization composed of hundreds or

thousands of systems spread across buildings, time zones, and continents.

Federated search cannot support the “data finds data” mission, because it has no ability to deliver on

enterprise discoverability at scale.

Directories: Priceless
Think about a library. Think of the library’s floors, hallways, and shelves as silos of infor-

mation. Valuable information is tucked away, waiting to be discovered. No one roams the

halls when looking for a specific book. Instead, one uses the card catalog—cross-referenced

on subject, title, and author—to facilitate discovery of relevant documents.

Let’s say that directories, indices, and catalogs are all basically the same thing: a thing used

to locate other things. Some examples of locators include the card catalog at the library,

phone directories, Google, eBay, and so on. In each case, the directories are equivalent to

locator services: they return reference information (pointers) after being provided one or

more search terms. At the library, the card catalog is a special-purpose directory used to

enable efficient enterprise discovery, providing the user a specific pointer to a document

(e.g., using the Dewey Decimal system). After the user is provided a pointer, the activity

becomes “federated fetch.” Note the difference between federated search (not useful) and

federated fetch (useful).

A Google search does not scour the planet for the results; rather, a specialty directory cre-

ated by Google is searched and the results, pointers to the real documents (e.g., URLs) are

returned to the inquirer.

It would follow that the only scalable solution to enterprise-wide discoverability involves

the use of directories. No surprise there; a special-purpose directory is therefore a funda-

mental component that permits “data finds data” systems to handle discoverability at scale

and determine relevance in real time.

All directories are not created equal. There is a big difference between traditional “context-

less” directories versus directories capable of accumulating and persisting context. Contex-

tualized directories enable data to find data in remarkably unexpected (nonobvious) ways,

in real time, at great volume, and with extraordinary efficiency.

Context-less directories are the most common type of directory: each document is indexed

indifferent to all other documents. In other words, new enterprise transactions (documents)

update the directory without any attention to how this transaction (metadata for the index)

might relate to any other transaction. Context-less directories are designed to provide

users with the most basic ability to locate documents (e.g., all books related to “Billy the

Kid”).

114 C H A P T E R S E V E N

Semantically reconciled* directories are directories that attempt to exploit synonyms, things

that use different words to mean that same things. This means users looking for one thing

(e.g., “Billy the Kid”) should find other “same” things (e.g., “William Antrim,” one of his

aliases). Semantically reconciled directories recognize when a newly reported entity refer-

ences a previously observed entity. Directories that contain semantically reconciled data

can be thought of much like a library card file, with one big difference: cards relating to

like entities are rubber-banded together. This means if a search locates one card, as a

bonus, all other related cards are discovered without any additional effort. Most notably,

some of the cards in the rubber-banded clump of library cards may not even contain the

original data item being searched.

Quite frankly, this can look like magic. When attempting to discover what the enterprise

knows about an email address, one can discover a record with the email address as well as

other records in the enterprise about the same person—for example, loyalty club activity,

despite the fact that the loyalty club record never contained an email address. Algorithms

that semantically reconcile identities (for example, people or organizations) are sometimes

referred to as identity resolution.† Algorithms that determine when multiple entities are in

fact the same entity require a deeply nuanced discussion, and as such are beyond the

scope of this chapter.

Semantically reconciled and relationship-aware directories‡ are a type of directory that provide

an even higher degree of context by allowing users to discover additional documents, such

as those related by intimate association (e.g., Billy the Kid aka William Antrim). It may

also be important to understand there was a real William Antrim, who happened to be

Billy the Kid’s stepfather. The way to visualize this is to picture in your mind’s eye a

library card catalog with some cards already bundled in rubber bands as described earlier,

plus threads that connect some bundles to other cards and other bundles. One can search

any single set of terms and locate a bundle, and at that instant learn how that bundle is

associated (related) to other bundles. Some association threads are thicker than others,

indicating a stronger association. By following a thread to another bundle, one can then

instantly see what threads lead from the next bundle. In this manner one can observe

degrees of separation, as in the six degrees of Kevin Bacon.

When contemplating “data finds data” systems, keep in mind that the moment a new

transaction is placed in context, possibly adding to the context of an existing entity, there

is the potential that the new information may change the shape of the picture as the bun-

dles and the threads reorganize.

* Defined as “Recognizing when two objects are the same despite having been described differently.”

† Don’t confuse identity resolution with a quasi-related set of methods sometimes referred to as
match/merge or merge/purge. More about the distinction here: “Entity Resolution Systems vs.
Match Merge/Merge Purge/List De-duplication Systems” (http://jeffjonas.typepad.com/jeff_jonas/2007/
09/entity-resoluti.html).

‡ The NORA (Non-Obvious Relationship Awareness) is an example of a semantically reconciled and
relationship-aware directory.

http://jeffjonas.typepad.com/jeff_jonas/2007/09/entity-resoluti.html
http://jeffjonas.typepad.com/jeff_jonas/2007/09/entity-resoluti.html

D A T A F I N D S D A T A 115

Persistent context is the term used to refer to the current state of the reconciled and relation-

ship-aware index—essentially, the present status of the ever-changing and incrementally

improving puzzle. Persistent context is the memory of how things relate, and it trumps the

just-in-time context that is delivered in federated search systems.

Persistent context (semantically reconciled and relationship-aware directories) enables

high-performance discovery, streaming contextualization, and the opportunity to detect

relevance in real time. It is also worth noting that the detection of relevance is computa-

tionally cheapest if it can be assessed at the moment the data ingestion is taking place. In

this respect, the librarian (the function that stitches the new data into the directory) is the

first to notice if arriving data is of enough relevance to be published (e.g., to a user).

Sense-making on streams beats boiling the ocean. A clear way to envision this is imagin-

ing an organization with 4 exabytes of historical data that receives 5 terabytes a minute.

Do you think they run a process over the weekend to reveal what has been learned?

There may not be enough computers or energy on Earth to do this. (Note: Envisioned

behavior at scale proves to be very helpful when designing highly efficient systems.)

Relevance: What Matters and to Whom?
Now we have lots of data coming at us. Take a moment to assess all the sights and sounds

in your immediate environment: the background hum of the computer, the music play-

ing, the cartoons on the TV, and the kids trying to steal one another’s toys. As humans, we

have internal relevance-detection algorithms that assess all of the presented data, and

alert us when some observations cause us to take notice and possibly react. Sort of like

ignoring the kids and their ongoing bickering until it threatens to escalate into violence.

It’s that one move, by one kid, that alerts us that it is time to intercede.

How one exploits technology to calculate relevance and when to allow it to automatically

register an alarm is crucial. On the technology side, the objective is a state in which the

very next item in an alarm queue is the next most important item for review. There is also

no reason to produce more alarms than there are available resources (for example, ana-

lysts, systems) to deal with them. Risk-assessment engines, for example, must be config-

ured to produce alarms appropriate to one’s individualized risk, staffing, and ability to

respond. If resources increase, one can increase alarm sensitivity.

Components and Special Considerations
Our intelligent “data finds data” environment must contain eight essential building blocks:

• The existence of, and availability of, observations

• The ability to extract and classify features from the observations

• The ability to efficiently discover related historical context

• The ability to make assertions (same or related) about new observations

• The ability to recognize when new observations reverse earlier assertions

116 C H A P T E R S E V E N

• The ability to accumulate and persist this asserted context

• The ability to recognize the formation of relevance/insight

• The ability to notify the appropriate entity of such insight

The Existence of, and Availability of, Observations

If there is no data, then there is no chance one can make sense of it. And if there is data, it

has to be “sensed” (collected) by some sensor system for it to ever be of potential use. And

even if data is collected, one must have access to it to have any hope of making sense of it.

The Ability to Extract and Classify Features from the Observations

For the sake of argument, let’s say a grain of sand contains too few features to extract and

classify. Grains of sand are frequently the same color, size, weight, shape, and so on.

Therefore, the lack of discriminating features would prevent one from identifying the

same piece (semantic reconciliation) later. The point being, for data to be placed into con-

text, one must be able to extract and classify its key features. Structured data is rather easy

when address information is contained in one column and first and last name are in

another. Unstructured data, such as newspapers and blogs, take a lot more work; extract-

ing the right names and addresses is a challenging field, often called entity extraction. Fea-

ture extraction from video, such as car license plate readers, can be done in certain cases.

Long story short, one must be able to extract and classify the key features of observations

if one hopes to stitch observations together into context.

The Ability to Efficiently Discover Related Historical Context

As new observations arrive, the extracted and classified key features are used to look into

the contextualized historical data (what we have called persistent context) to discover

how this new piece fits. For this to occur in real time in support of high-volume data

streams, this discovery requirement must be extremely fast.

The Ability to Make Assertions (Same or Related) About New
Observations

When a new observation is contextualized with respect to the historical data holdings, the

algorithms must make one of several assertions: (a) this is a new entity, the first of its kind

(e.g., a new person); (b) this is a known entity (e.g., this is an observation about some-

body we already know), in which case the new entity is “resolved” with the existing

entity; or (c) how this entity (the new one or known one) now relates to other entities.

There comes a point, just the same as when people put jigsaw puzzles together, where one

concludes that nothing more can be done. It is at this point that one abandons the current

item wherever it has been placed and moves one’s attention to the next puzzle piece

(observation). Note that you may have made the last assertion in error, but at this point it

is unlikely you will ever discover this unless a new piece arrives to reveal this potentiality.

D A T A F I N D S D A T A 117

The Ability to Recognize When New Observations Reverse Earlier
Assertions

Sometimes an observation contains new information that provides the evidence that an

earlier assertion should be reversed. Possibly this new information proves that entities pre-

viously deemed not the same are in fact the same entity. Conversely, a new observation

may reveal that two entities previously determined to be the same are now believed to not

be the same at all (for instance, the new data point indicates that two Bob Joneses in our

database are not the same person, and instead are a case of junior versus senior).

Using new observations to reverse earlier assertions is one of the most complicated aspects

of semantic reconciliation algorithms. But without this important feature, databases drift

from the truth over time. The disadvantage of this is that periodic database reloads are

used to correct for this phenomenon. And for very large data sets, obviously this presents

a scalability nightmare.

The Ability to Accumulate and Persist This Asserted Context

When the assertion process is complete—in other words, when new observations are

reduced to assertions (new, same, or related entities) and new observations are used to

remedy these same earlier assertions—the newly learned knowledge must be captured in

a database so that the very next transaction can benefit from the new knowledge. In some

respects, this begins to feel like a very basic incremental learning system.

The Ability to Recognize the Formation of Relevance/Insight

Only after a new observation is applied to the historical data such that no more computa-

tion is warranted, this is the moment the system must ask itself, “Have I learned some-

thing that matters?”, much in the same way a person will incrementally look to see what

has been revealed after each puzzle piece is placed onto the board.

The work we have done involves the detection of prespecified patterns of interest. For

example, it is relevant to discover whether the good guys know bad guys or if the cash

transactions for one person exceed $10,000 per day.

However, new relevance parameters can be set based on external processes, which might

include human insight or secondary pattern-discovery/data-mining engines.

The Ability to Notify the Appropriate Entity of Such Insight

When insight is detected, who or what system should be notified? In our existing imple-

mentations this is trivial, as each relevance rule (for example, if a prospect is a close asso-

ciate of one of my top 50 customers) and the dissemination rule (i.e., send a courtesy

message about this to the casino host) is established at the same time.

118 C H A P T E R S E V E N

Privacy Considerations
Smarter systems, like those capable of performing “data finds data,” require very close

attention to privacy and civil liberties protections. How these next-generation systems are

built and deployed, and what policies (including accountability and oversight) govern

their use deserves close attention and vigorous debate. Some of the core issues include:

defining what data should be indexed for discoverability, how the data will be stitched

together (e.g., what constitutes a relationship?), what constitutes relevance, what rele-

vance is disclosed to whom, who can search the index, how the system will be monitored

for unauthorized use, and how errors will be detected and corrected.

Fortunately, the directory-based model has a number of nice privacy-enhancing charac-

teristics, including:

• Urges to share more data with more parties are replaced by transferring less informa-

tion to fewer places (card catalogs).

• Who searches for what and what they found can be logged (for instance, using tamper-

resistant logs) in a consistent manner, thus facilitating better accountability and oversight.*

• Information sharing between parties is now reduced to just the records that they need to

know and to share (sharing less by sharing only the information that must be shared).

• It is now possible to make the index anonymized, which means the risk of unintended

disclosure of even the limited metadata in the index is drastically reduced.†

Conclusion
“Data finds data” systems determine how new observations relate to what is known and

detect relevance/insight worth special attention. Such insight ideally occurs in real time,

thus enabling real-time reaction.

This emerging technology will ultimately differentiate one organization from another

across a spectrum of enterprise interests, ranging from better recognition of opportunity to

better estimation of risk.

Data finds data will likely become yet another building block from which next generations

of advanced analytics will benefit. This new paradigm will inevitably lead to the emer-

gence of even smarter systems, potentially even contributing to advances in cognitive

computing.

* Tamper-resistant logs are also often called immutable audit logs. An interesting paper published by the
Markle Foundation on the subject as related to national security, especially in relation to nontranspar-
ent government systems, is located here: http://www.markle.org/downloadable_assets/nstf_IAL_020906.pdf.

† More about anonymized directories can be found in a chapter entitled “Anonymized Semantic
Directories. A Privacy–Enhancing Architecture for Enterprise Discovery,” by Jeff Jonas and John
Karat, in a book entitled Emergent Information Technologies and Enabling Policies for Counter-Terrorism.
Robert L. Popp (editor), John Yen (editor), published in 2006 by Wiley-IEEE Press (http://www.
wiley.com/WileyCDA/WileyTitle/productCd-0471776157.html).

http://www.markle.org/downloadable_assets/nstf_IAL_020906.pdf
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471776157.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471776157.html

119

Chapter 8 C H A P T E R E I G H T

Portable Data in Real Time
Jud Valeski

Introduction
APPLICATION DATA HAS BEEN LOCKED AWAY FOR A LONG TIME. INITIALLY IT WAS CONFINED IN APPLICATIONS

running on disconnected systems siloed around the world. Enter the combination of CAT-

5 Ethernet cabling, IP, routers, DNS, and sockets. Once machines were connected to one

another, data was able to move more freely between applications, and subsequently it

became more interesting. Data became enveloped in a variety of new contexts, beyond the

application from which it originated. Overnight, client-server computing took off with the

advent of the Internet, and suddenly wildly disconnected machines were talking to one

another. With HTTP as the communication medium, and text the language, data started

flowing.

The major types of mainstream data that have been moving around over the past 15 years

can be categorized as pornography and general consumer commerce (including advertise-

ments by proxy), and both conform nicely to the delivery model provided by traditional

“web browsers” and their server counterparts, introduced in the early 1990s. More

recently, a third category of data has started moving around en masse: social data. People

have moved their socializing onto the network, and it’s creating a new type of data, as

well as new access needs that don’t conform well to the patterns that have become

120 C H A P T E R E I G H T

ingrained thanks to the browser. Social data is here, and its needs are now. A January 14,

2009 PEW report, Adults and Social Network Websites,* stated that well over 50% of online

adults between the ages of 18 and 34 have social networking profiles.

In this chapter I discuss this evolution and our current approaches to solving the inherent

issues in consuming today’s trendy information: social data. Although leaps and bounds

have been made to get us to where we are, some fundamental programming principles

were lost along the way: event-driven architectures and predictability of data structure.

Often solutions to modern problems are right under our noses, and Occam’s razor suggests

they’re usually simple. By literally shifting HTTP 180 degrees and awakening the POST

method giant, “real time” can legitimately become part of the industry’s vocabulary. The

introduction of an intermediary broker, Gnip (http://www.gnip.com), provides a convenient

bridge between heterogeneous social data and consuming applications.

The State of the Art
Today’s social data is being contorted to fit a delivery and formatting landscape that

doesn’t map well to the behavioral needs end users prefer. This is often the case when a

platform becomes established over time; people find new ways to leverage it, even if sacri-

fices must be made in order to do so. Illustrating the major underpinnings of today’s

framework is the best way to describe this contorted leverage.

Transport

There are many ways to connect two sockets together and move data between them.

However, for the foreseeable future, there is only one that matters: HTTP. There will

always be specialized cases wherein more performant protocols can be used to optimize

data transmission for said special case, but HTTP is ubiquitous, and has punched more

holes in more firewalls, across Earth and its satellites, than anything else. Therefore, it is

the one. If something can’t be done over HTTP, that something needs to be reconsidered.

To illustrate this point, consider consumer electronic devices. Many of them are cool, but

only the amazing devices have HTTP clients on them (e.g., iPhone, or Android-based

devices). Truly amazing devices have HTTP servers on them as well (Nokia’s S60 can run

an HTTP server). As with any good rule, there are exceptions. HTTP is both state-less and

heavyweight, and both of these traits can get in the way when you’re trying to do things

that need to be fast and state-full. The following protocols exemplify the kind of excep-

tions I’m talking about.

XMPP

AOL’s Instant Messenger product was the industry’s first crack at a real-time social mes-

saging product, and it took off like a rocket. People wanted to “chat.” It didn’t take long for

people to want to chat P2P, or through other services, thus XMPP was born. Starting as a

* http://www.pewinternet.org/Reports/2009/Adults-and-Social-Network-Websites.aspx

http://www.pewinternet.org/Reports/2009/Adults-and-Social-Network-Websites.aspx
http://www.gnip.com

P O R T A B L E D A T A I N R E A L T I M E 121

standardized framework of transports and formats for social conversation and presence

data, XMPP has been cobbled into a general messaging framework that allows for a wide

variety of uses, from IM to general message PubSub. In mid-2008, Cisco bought Jabber.com

(the leader in commercialized XMPP installations), and the network’s routers will soon

have slim, specialized XMPP handlers burned into silicon for all the world to use.

BitTorrent

When your use case is highly specialized, it’s best to tune your pipeline to be “perfect.”

Cutting out the cruft and overhead to negotiate data transfer between arbitrary clients and

servers is only natural when the clients and servers are tightly coupled and well known to

each other. BitTorrent is phenomenal at moving large binary chunks of data to and fro

across a distributed set of nodes, and is a great example of optimizing for a very specific

use case.

Proprietary/P2P

One of HTTP’s weaknesses is that effectively each request/response pair includes the same

set of headers as the previous one, even when the pair may be the nth negotiation

between a specific client and specific server. Wouldn’t it be smarter to manage the client-

server negotiation out of band and upfront, and leave the data channel alone to do nothing

but move bits around? Yes. This reason, amongst many others, drives many Point-2-Point (or

Peer-2-Peer) protocol implementations that move vast amounts of data around every day.

HTTP being the tube of choice leaves the question: what is its format counterpart? Surely

if a transport protocol has become ubiquitous over the years, the data moving across it

must have distilled along the way as well.

Formats

XML has provided the basis for data formatting going forward. The question as to which

base-level format something should be communicated in has largely gone away. Now dis-

cussions over XML-derived formats are where the conversation takes place. Although

most developers take XML for granted these days, it is worth noting how heavy and

bloated it is. It’s a text-based format that is rather descriptive, by definition, and therefore

it is generally not the most optimized format for communicating. Whenever I get into

modern protocol and format discussions, I’m reminded of AOL’s proprietary FDO model.

FDO is a binary, tightly bit-packed protocol/format combination optimized for 300-baud

modem connections. Thankfully, connections have evolved to the point that broadband

speeds have become the norm.

All that said, just like HTTP, XML’s weaknesses are also its strengths. If we have learned

anything over the past 15 years, it is that ubiquity follows human-readable protocols and

formats—and I mean that literally. The further a format gets from being decipherable by a

human, the further down the innovation stack it gets pushed. When the only way to

debug something is via decoding tools that transform data into something I can inter-

pret using my puny brain, a significant hurdle has been put in place between human

122 C H A P T E R E I G H T

creativity and communication. “Winning data” is readable by a programmer. “Losing

data” can be consumed only by machines.

Note that there’s a difference between payload formats and metadata formats (usually

XML). High-definition video data (e.g., the latest blockbuster movie in HD) takes up vast

amounts of physical space, and is not human-readable; I call this a payload format. The

descriptive information surrounding said video, its metadata, is relatively compact. Pay-

load formats overwhelm metadata transmission across the network (just ask your favorite

ISP what its ratio looks like), yet they are relatively dumb and uninteresting until they are

decoded by a machine.

APIs

This is where things start to get interesting. Once everyone realized that the gazillions of

HTTP transactions flying around looked like traditional API calls, REST gave us the foun-

dation to use the Web as a giant distributed application. Roy Fielding, one of HTTP 1.1’s

contributors, gave us the mental framework to describe things as REST (REpresentational

State Transfer; thank you, Mr. Fielding).

Developers could finally stop grappling with CORBA and DCOM to distribute their logic and

data across networked machines, and instead use the standard HTTP and text-based tools to

get their applications to talk to one another on levels lower than traditional web applications.

This has led to an explosion of APIs across nearly every web application you can think of,

as shown in Figure 8-1. An API became the thing every product manager had to have.

This was both a good thing and a bad thing. On the bright side, thousands of products

have opened up their data for all the world to use. Programmable Web (http://www.

programmableweb.com/) has hundreds of them documented and ready to use. On the dark

side, many APIs were hastily produced with no consideration for how they might be used.

The result has been a surge in API calls being made across the WAN to disparate endpoints

that may or may not meet your expectations, as the API caller, in terms of performance or

functional characteristics. Very few web APIs offer service-level agreements (SLAs), for

example, and when they do, the terms are usually deplorable.

F I G U R E 8 - 1 . Public API growth over the past few years, as derived from Programmable Web.

2007 2008

Year

2009

1,000

600

200

http://www.programmableweb.com/
http://www.programmableweb.com/

P O R T A B L E D A T A I N R E A L T I M E 123

The need, real or imagined, for an application’s data and functionality to be available via

an API has created some interesting challenges on the network.

If you look at how APIs are being used across the network today, they are providing data

with seemingly arbitrary delivery characteristics and SLAs. For the first time, at scale, we

have software being integrated with other software with extreme regularity. These kinds

of integrations have been dubbed “mashups,” as they “mash” data from various services

together. More and more, end user expectations are that the data in their social applica-

tions arrives in real time, yet the infrastructure to support real-time data transmission is

far from prolific. In our pursuit of real-time applications, the infinitely complex creativity

of software developers has yielded many different models in an attempt to provide real-

time notification (e.g., “Comet,” “Web Hooks,” various “PubSub” messaging systems) to

applications. Some of these have worked well, and others have not. No matter your

approach, fundamentally there’s no real magic going on in the solution; rather, age-old

frameworks are always at play behind the curtain.

There are two basic time-flow-processing primitives in software: polling and events. Soft-

ware executes across time, and user-interactive software needs to consume input from a

user or another service. That input makes its way into the running application via either

polling or events. It’s worth noting that you can implement either using the other, but

that’s a subtle trick left for a computer science classroom, and I’ll avoid it here. What are

important are the higher-level notions that define how an application collects its relevant

input. It’s easiest to convey the two models using examples.

Polling

Polling is accomplished by the software constantly asking an interrupt whether there has

been a change. If a change is detected, the program can take a defined action as a result.

An often-used analogy is the bartender. Imagine a bar setting, one bartender, and 10

patrons. If the bartender is a polling bartender, he will repeatedly ask each patron if he or

she would like a drink. “Would you like a drink?” “Would you like a drink?” “Would you

like a drink?” and on and on down the bar. Every now and then, one of the patrons being

asked will respond “yes,” and the bartender will change his behavior and make the patron

a drink. Polling is beautifully simple, but can often be horribly inefficient (as the analogy

illustrates) for both the client and the server.

Rate limiting

Frontending your online service with an API for developers to access can usually be done

fairly easily. Slapping some framework on top of your application and wiring up data

access doesn’t take much. However, once you’ve done so and made the API public, you

are no longer in control of how your API will be used. That very control has protected

running code for thousands of years. Building a “web API” (aka “Web Service”) at scale

takes real thinking, engineering, and operations.

124 C H A P T E R E I G H T

If one is lucky enough to build an API interesting to developers, and subsequently one

that is heavily polled, likely the easiest way to deal with the increased load on their appli-

cation is to block access at the IP, or header, level and to limit their API’s use. Although

that solves the scaling issues, it interrupts the desired program flow for those integrating

the needed API in order to keep their users happy. Developers don’t want to build throt-

tling layers in their applications; they just want to make the calls they’re used to making

and have them “just work.” Actually solving the data access problem in your system takes

more energy than IP-based rate-limiting (aka “throttling”), yet we often don’t have the

luxury of time to invest in the true solutions. Some social data applications have invested

in getting this right, and their APIs accommodate heavy load (e.g., Digg). Most, however,

have not.

Getting it right

Having a popular social application with lots of social data shouldn’t require a massive

investment in infrastructure and horizontally scalable applications, however. Both of

those things inhibit innovation at the product level, and eat money for breakfast. Instead,

leveraging the time-tested “event” primitive, described shortly, is in order. The law of

large numbers illustrates that 90%+ of calls to access social data are wasted. The vast

majority of the time, the data sought isn’t even available. Continuing with the bartender

example, eventually the patrons are going to become irritated with being asked the same

question over and over again when their answer is always the same: “no.”

Constantly asking Flickr for photo updates that a given user has made is a waste. Instead,

Flickr telling your application when that user has updated his photostream is significantly

more efficient and, more importantly to users, more timely.

Zero miles per gallon efficiency

I’ll use what has become known as the “Flickr, Friendfeed example” to highlight the

inefficiency inherent in polling for social data. Social data, by and large, is user-generated.

That means social applications that leverage social data are based on the behavior of

humans, not on the more predictable and manageable behavior of computers. When we

build software, the value of which is purely a function of human activities, things get

interesting. This example is useful because both a publisher (Flickr) and a consumer

(Friendfeed) compared notes, yielding valuable insight into the problem inherent in “off-

box,” heterogeneous notification transmission via polling.

In July of 2008, Even Henshaw-Plath and Kellan Elliot-McCrea presented “Beyond

REST?” (http://www.slideshare.net/kellan/beyond-rest) at OSCON (O’Reilly’s Open Source

Convention) in Portland, Oregon. In the presentation, they revealed that Friendfeed

polled Flickr’s API 2.9 million times in order to determine whether any of Friendfeed’s

46,000 Flickr accounts had uploaded photos over a 24-hour period. Of those 46,000 users,

only 7,000 of them even visited Flickr over the time period and could have potentially

uploaded a photo.

http://www.slideshare.net/kellan/beyond-rest

P O R T A B L E D A T A I N R E A L T I M E 125

A well-known social application rule, called the “1, 9, 90” rule, has emerged over the past

few years. The gist is that if you consider 100% of a social application’s user base, 1% of

the users contribute to the core data (e.g., “upload a photo”), 9% of the users engage with

the data (e.g., “mark a photo as favorite”), and 90% of the users just view the data (e.g.,

“view photos”). Conservatively applying this rule to the Flickr/Friendfeed example would

suggest that of the 7,000 users that visited Flickr on that fateful day, 700 of them would

have uploaded photos. That means Friendfeed polled Flickr 2.9 million times to learn that

700 of their users actually did something. That’s a “hit” percentage of 0.02%, or 4,000

polls to find a single update.

Blending the Flickr/Friendfeed example with the bartender analogy would mean that the

polling bartender would need to ask a patron whether she wanted a drink 4,000 times

before the patron said “yes” in order to ensure that the patron received her drink in real

time.

It’s one thing for an application making local “on-box” API calls to absorb such inefficien-

cies. It’s quite another for software making API calls across the Web to behave so ineffi-

ciently. When you consider this one example in light of all the social applications in use

today, the overhead is truly appalling.

Event-driven software drives software to real time, and social data, by definition, needs to

be communicated in real time. Seeing that a check cleared my checking account via my

online banking software can be “off” by a day or two, but a teenager seeing the pictures

his best friend took on spring break needs to happen immediately.

Events

An event-driven architecture, in contrast to polling, takes a different approach. As

opposed to the bartender asking patrons over and over again whether they’d like a drink,

the bartender just stands behind the bar waiting for patrons to tell him that they’d like

another drink. Though event handling is often more efficient, it does require some extra

overhead in terms of the discrete “event” notion itself. Events have to be fired, and cap-

tured; a framework for event handling has to exist, which leads to complexity. Polling can

be done very simply in a linear, procedural loop, and that simplicity is one of the contrib-

uting reasons to its overuse.

Ever since the Jurassic period, these two execution-flow paradigms formed the foundation

of software development. Both client and server software relied on them to control execu-

tion flow and the behavior of applications. Operating systems leveraged them appropri-

ately to provide fluid user input and interactivity. As a developer, your choice of one over

another often boiled down to the language you were using, or the functionality provided

by whatever library or framework you happen to be using. Although the performance

characteristics between the two are often not terribly interesting in local, “on-box” appli-

cations, the performance characteristics between them when doing remote, “off-box”

operations can be crippling to an application. Note that when dealing with UI and graphics

rendering, local performance differences can make or break an application.

126 C H A P T E R E I G H T

Once programmers started injecting remote API calls into local applications en masse, the

differences between polling and event handling became clear. The difference between

local I/O calls and remote I/O calls is exponential. All the work that went into making

disk, memory, and chipset interfaces faster to speed up applications became moot.

Figure 8-2 illustrates the relative I/O performance difference between local types of data

access and remote data access. To keep things simple, I’ve implied the inherent IP connec-

tion setup/teardown latency, and just illustrate the point as a function of bandwidth/

throughput. If you do, however, consider the actual protocol negotiation as a function of

total data transfer overhead, the latency issue becomes even more severe.

As you can see, the differences are intense. When remote versus local data access times

are on such extremes, the differences between using polling or events to drive your appli-

cation will compound latency issues even further. When your software needs to know

whether something has changed in a service across the network, in order to take some

action, you don’t have time for inefficient polling. If the bartender gets an affirmative

response to the “do you want a drink?” question, one in every 4,000 requests, the time

wasted in querying blows up when the bartender has to ask the question of patrons sitting

across town.

The differences between polling and events are all well and good, but only one of these

models is easy over the Web: polling. Client-server programming via HTTP/REST never

provided a formal event-driven framework for web application development, and as a

result, the Web is littered with social data–driven applications that suffer from innate tim-

ing inefficiencies that are further highlighted by the inherent timeliness of social data. If

my friend is going to be in town tomorrow, I don’t want to find out too late. The very

applications we want to be “real time” are built on a house of cards that started crumbling

just as the walls were going up.

HTML 5 events

It is worth noting that the HTML 5 specification outlines an event model and “Web Socket”

framework that exposes bidirectional communication at a high level. XMLHttpRequest has

F I G U R E 8 - 2 . Relative throughput of file descriptors operating on various connection types.

Memory Local disk Database Intranet
(100 Mb/sec)

Extranet
(3 Mb/sec)

3G wireless
(755 Kb/sec)

P O R T A B L E D A T A I N R E A L T I M E 127

taken GUI web applications to a new level, and I suspect that “Web Sockets” will have a

major impact on web app development in the coming years. Allowing a browser-based

application to access data in a more socket-like manner will only lead to great things.

WAN Scale Events

Distributed event handling and notification is not a new problem, and neither are its solu-

tions. In fact, the enterprise space has produced incredibly robust and efficient, albeit pro-

prietary, solutions in the form of “message buses.” Tibco comes to mind as a leader in

enterprise message bus solutions. However, enterprise message buses are focused on the

criticality of the data they’re usually transferring, as opposed to diverse sets of endpoint

connections across an even more diverse connection stack. Stock trades need to be guar-

anteed in delivery and privacy. Guarantees at this level come at a cost, and that cost gets

translated into high licensing fees, which do not translate well to the Internet at large.

Social data is created, and consumed by applications that are free to end users. Subse-

quently, expensive, proprietary, hard-to-integrate message bus solutions from the enter-

prise space are not welcome on the Web.

Leveraging the technologies that yielded the explosion of social data itself to provide

event-driven notification schemes generously provides solutions based on technology the

system is already familiar with. HTTP POSTs can be used to push events across the WAN

between arbitrary services, using standard formats (XML), and the latency gap in execu-

tion control flow can be closed. Jeff Lindsay is doing a great job evangelizing the embodi-

ment of this HTTP POST event transmission model in what he’s dubbed “Web Hooks”

(http://blog.webhooks.org/). To reiterate, HTTP isn’t the most optimized protocol for trans-

mitting these events, nor is XML the most optimized format, but the two provide the most

prolific, pragmatic mechanism to solve the problem within the context of real-time server-

to-server communication.

If social data becomes any more latent, one of two things will happen: either we, as con-

sumers, will continue to suffer and our behavior patterns and expectations will have to

conform to an inferior model, or we’ll stop using the products because their usefulness

degrades to the point of not having enough value to bother. The former has plenty of pre-

cedent (Beta versus VHS) as we regularly accept less-than-great solutions to problems we

want solved. The latter happens every day as burgeoning industries and products regularly

collapse due to timing and last-mile refinement issues. Until a framework becomes stan-

dard, an intermediary event gateway can broker events and the data itself across a variety

of protocols and formats, from social data publishers to social data consumers. Providing

the mechanism can be done fairly cheaply and generically, while eliminating detrimental

latency around social data. Real-time social data ubiquity, at “web scale,” is dependent

upon an event-driven model.

Gnip was founded on the notion that event-driven architectures around social data con-

sumption are the only way to deliver real-time access patterns. However, recognizing that

polling is here to stay, and at times the preferred model, Gnip can still be polled for social

data activities.

http://blog.webhooks.org/

128 C H A P T E R E I G H T

Single API integrations are generally straightforward. However, when you go to wire up

many endpoints, the inefficiencies start piling up. Gnip does the work of multi-API inte-

gration for its data consumers, who then have to integrate with only a single point: Gnip.

Social Data Normalization
Assume we’ve solved the data access latency issue by using HTTP POSTs, à la Web Hooks, to

handle events across the WAN. This resolves general API access issues, but not the diverse

nature of the data itself. XML provides structure for data, but it does nothing for commonal-

ity. Social data aggregation applications today are stricken with one-off understandings of

each social data API they integrate with. The overhead in understanding the intricacies of the

data structure that comes back from a particular API is high—too high. While protocol mux-

ing gateways have existed for a long time, generally only strict XML transformation transla-

tors exist for consolidating common, normalized data from disparate sources. Unfortunately,

strict parsing of data rarely works, as the set of services actually creating the data is so diverse.

Their understanding of the standards, encodings, and escape sequences all varies. In addition,

the software creating the XML for consumption inevitably contains bugs, which result in

poorly formatted output, further complicating its consumption.

We learned from strict HTML-parsing web browsers that standards unfortunately do not

result in perfectly formatted data that software adhering to those standards can flawlessly

consume. The reality is that standards are interpreted differently, software is buggy, and

the most powerful de facto standard is what users are already doing. The power of the

people can never be denied.

If you’ve ever spent time looking at data from various social sources, you’ll notice that it

starts looking the same. Although the commonality is clear for a human to interpret, it is

much harder for a machine to interpret. Human editorial guidance in mapping data setA

to data setB is required.

Consider the two following examples of XML from two different “social bookmarking”

services. Although they’re both clearly XML, representation of the “bookmark” is wildly

different, and yet they both provide a similar service to the end user.

From Delicious:

<item>
 <title>Fractals derived from Newton-Raphson iteration</title>
 <pubDate>Mon, 19 Jan 2009 20:02:05 +0000</pubDate>
 <guid isPermaLink="false">http://delicious.com/url/7549fded443f#joe</guid>
 <link>http://www.chiark.greenend.org.uk/~sgtatham/newton/</link>
 <dc:creator>iacovibus</dc:creator>
 <comments>http://delicious.com/url/7549fded443f</comments>
 <wfw:commentRss>http://feeds.delicious.com/v2/rss/url/a</wfw:commentRss>
 <source url="http://feeds.delicious.com/v2/rss/joe">joe's bookmarks</source>
 <category domain="http://delicious.com/joe/">mathematics</category>
 <category domain="http://delicious.com/joe/">newton-raphson</category>
 <category domain="http://delicious.com/joe/">fractals</category>
 <category domain="http://delicious.com/joe/">iteration</category>
</item>

P O R T A B L E D A T A I N R E A L T I M E 129

From givealink.org:

<item>
 <title>Bus slams into shop houses after driver collapses behind wheel</title>
 <link>http://www.thaivisa.com/forum/Bus-Slams-Shop-Coll-t198228.html</link>
 <description>Bus slams into shop collapses behind wheel</description>
</item>

With thousands of services exposing their user-generated content (UGC) via APIs and

feeds today, normalizing its structure and content so developers can anticipate commonal-

ity needs to be a priority. The DiSo project is a major catalyst in bringing relevant parties to

the table, across APIs, in order to distill more consumable social data; see http://diso-project.

org/wiki/activity-streams.

Gnip was designed to act as an intermediary between data producers and data consumers.

As such, it is in a unique position to translate, and normalize, social data’s meaning into a

canonical understanding and structure. Leveraging the collective input and knowledge

around industry’s desire for more readily consumable social data, Gnip acts as a funnel.

Taking in a plethora of different protocols and formats and outputting consistent, more

homogeneous data provides easier access to data.

Business Value of Data

The debate around whether or not open source software is good or bad is largely over.

There are fairly clear lines between when it is a good idea for a business to open source its

software, or parts of it, and when it is not. In a nutshell, if your software is “one of a kind”

intellectual property that sets you apart from the rest of the world, you should consider

keeping it under lock and key. Otherwise, it’s a candidate for open sourcing so the com-

munity can overlay its experience and expertise into the code and make the world a better

place. Unfortunately, similar decision frameworks aren’t as mature when it comes to data.

The explosion of APIs has caught the data publishers off guard, and subsequently their

understanding of the value of their data is as clear as mud.

Some traditional content publishers have hardened the value of their data. Weekly peri-

odicals give the content away for free, and have advertisers support the production of the

content (commentary) and the product (the magazine). Some trade magazines charge a

premium for subscriptions, and leave advertising models at the door. Traditional media/

content publishers on the Internet have largely adopted the advertising model to support

the distribution of their data (content). However, access to social data via APIs doesn’t

have a mature model. Should providers charge for access, for the data itself, or should

everything just be free? Unless you’re a “freegan,” none of these answers are clear. Unless

the data in question has intrinsic value, appraising it becomes very difficult and convo-

luted. Should acquiring that microblogging message cost you, as a data consumer, $0.10?

Should that message be licensed, or should the access method be leased? The difference

between an item’s value and the shipping/handling around it comes to the fore. Should

the user actually generating the content on the publisher’s service receive a cut of any rev-

enue derived from it? Who actually owns the data to begin with? As you can see, these

are loaded questions with no clear answers.

http://diso-project.org/wiki/activity-streams
http://diso-project.org/wiki/activity-streams

130 C H A P T E R E I G H T

Until a social data marketplace emerges, the industry will be left with some publishers

claiming their data is priceless, while others consider theirs free. Consumers have been

trained to believe that most data is free, so if social data is ever actually priced, they will

have to evolve to be tangibly part of the value chain.

Public versus private

Some data is considered public, whereas other data is private. The distinction between the

two is defined by the service providing the data, and is usually outlined in the Terms of Ser-

vice for a given service. While the social understanding of the two is an interesting topic in

and of itself, I’ll consider the technical implications of accessing the two in this section.

Let’s start with the easier of the two, public. Accessing public data is relatively straight-

forward. The majority of today’s data APIs are accessed via unauthenticated REST inter-

faces. This means that they are no different than any other URL on the network; they’re

easily consumable by arbitrary users and applications. Accessing these API endpoints

requires little, if any, form of authentication, and authorization is all handled behind the

scenes in a generally opaque manner to the API consumer. The two more prolific authen-

tication patterns are the use of HTTP Basic-Auth and “API keys” embedded in URLs. Both

allow the API service to control access to the data and API functionality based on the

“authentication” credential. Surprise, surprise, both work very well with HTTP. Regardless

of whether any authentication is required for a public API’s access, the underlying social

data being accessed is still “public” in most cases.

Private data opens a can of worms. As more and more applications start leveraging oft-

considered “private” data available from other applications, end users demand control

over that access. Data providers also overlay their own notions of access rights, using a

variety of technologies. Both of these realities make aggregated access to private data

highly complex.

Ensuring that end users’ data is protected from a storage standpoint is only part of the bat-

tle. Storage redundancy and encryption have allowed applications to flourish, generally

without the loss or compromise of user information. In fact, users feel so safe that they

freely hand out their usernames and passwords to third-party applications in order to

allow deeper levels of API integration. The practice is incredibly insecure, yet it illustrates

the degree to which users will sacrifice their private information in order to get the func-

tionality they desire. There are two effective alternatives to sharing private login creden-

tials: OAuth and blind URLs.

OAuth (http://oauth.net/) provides a simple solution to allow various services to interact, all

while giving end users ultimate control over their information without sharing their user-

name and password with third parties. The interaction passes users off to the desired inte-

gration point and asks them to enable the level of access requested by the integrating

service. If the end user approves the interaction, a token is shared between the two ser-

vices, and the user can revoke its abilities if she ever chooses to do so.

http://oauth.net/

P O R T A B L E D A T A I N R E A L T I M E 131

Blind URLs are an even simpler way to share information across services and among users,

yet they’re not technically “secure,” so they’re often lent little credibility. Flickr’s “Guest

Pass” sharing functionality masterfully leverages blind URLs to allow a user to share “pri-

vate” photos with users who lack a Flickr account and therefore aren’t part of the Flickr

user’s “friends” or “family” sharing matrix. Blind URLs don’t require any work on behalf

of the consuming service to obtain URL consumption permission, but they technically can

be guessed, which can lead to private information being leaked.

Gnip currently plays exclusively with public data. Drawing the boundaries between which

controls should be provided to end users, and which should not, isn’t always clear when

discussing intermediary infrastructure. For example, you don’t know, or care, what inter-

nal traffic routing services credit card companies use to ensure secure financial transac-

tions, yet controlling who can see your vacation pictures is critical. Gnip is working to

draw its line between public and private data, as well as how it will ultimately support the

same services for private data as it does for public.

Conclusion: Mediation via Gnip
Amidst raging tides bringing more heterogeneous APIs ashore every day, some consis-

tency is warranted. As a message-oriented middleware service, Gnip promises to “deliver

the Web’s data” using a middleman data brokerage approach. Representing the data pub-

lisher’s desire to share via an array of inbound transport protocols, Gnip shuttles normal-

ized data from those publishers to Gnip consumers in real time (sub-60-second latency

from message receipt to rebroadcast). Regardless of inbound data format inconsistencies,

Gnip “cleans” and normalizes the data into a canonical format as a service to the Gnip

consumer. The result is a single integration with Gnip’s API, and consistently formatted

data for the consuming application.

You can access many social data APIs through Gnip’s single interface, all in “real time.”

Gnip’s framework is biased toward the event-driven model described earlier, in order to

promote a more efficient data flow across the network and between applications at large.

However, polling is supported as well. Requiring polling-based applications to switch to an

event-based model in order to leverage the normalizing benefits Gnip provides would be

too heavy handed. Without simultaneous, wholesale adoption of yet-to-be-completed

standards around Publish/Subscribe frameworks and format consistencies, a broker in the

middle is necessary.

The current infrastructure has done a great job carrying things thus far, and online com-

merce has boomed. However, continually morphing use cases and end-user needs to con-

form to existing frameworks will keep us bound to their limitations. The needs of real-time

social data require a change in the underlying control-flow shape, upon which our applica-

tions are built. I’m looking forward to event-driven architectures spanning the Web.

133

Chapter 9 C H A P T E R N I N E

Surfacing the Deep Web
Alon Halevy and Jayant Madhaven

What Is the Deep Web?
THE TERM “DEEP WEB” REFERS TO WEB CONTENT THAT LIES HIDDEN BEHIND HTML FORMS. IN ORDER

to get to such content, a user has to perform a form submission with valid input values.

Take, for example, the store locator form in Figure 9-1. Searching for stores in the zip code

94043 results in a web page with a listing of stores. The result page is an example of a web

page in the Deep Web.

F I G U R E 9 - 1 . The Borders Store Locator form and a deep-web page resulting from a particular form submission. (See

Color Plate 21.)

134 C H A P T E R N I N E

The Deep Web has been acknowledged as a significant gap in the coverage of search

engines. This is because search engines employ web crawlers to discover web pages that

will be included in their index, and traditionally these web crawlers were believed to rely

exclusively on hyperlinks between web pages to discover new web content. They lacked

the ability to automatically perform form submissions, and hence web pages behind forms

were not included in the index of a search engine. The web page with the form typically

carries very little information about the content of the pages behind the form; thus, com-

mon web users could get to Deep Web content only if they already knew of the existence

of the corresponding HTML form or if search engines somehow led them to the form.

They then had to perform the correct form submission to get to the underlying content. In

fact, the very name Deep Web (alternately, Invisible Web or Hidden Web) arises from the

observation that such content was not easily accessible to web users through search

engines.

Various accounts have hypothesized that the Deep Web has much more data than the cur-

rently searchable World Wide Web (Bergman 2001, He 2007, Raghavan 2001). Our recent

study (Madhavan 2007) estimated that there are tens of millions of HTML forms with

potentially useful deep-web content, and that the Deep Web spans every conceivable

domain. Popular domains include used car sales, real estate listings, rental apartments, job

listings, products, and food recipes. There are a number of forms that provide access to

government or public-sector information, such as laws and regulations, court rulings,

environmental reports, etc. But there are also forms that let users search for more esoteric

content, such as shade trees, taxes paid for park access, resin statues of horses, etc.

When considering the Deep Web, we must keep in mind that HTML forms are used for a

variety of tasks on the Web, not all of which constitute accessing deep-web content. For

example, they are used in login forms that require a username and a password, in feed-

back forms where user input is posted to forums and blogs, in shopping carts to execute

purchases, etc. Such forms require private information or lead to changes in backend

state, and are not considered to be part of the Deep Web. Instead, we are primarily con-

cerned with forms that simply let users anonymously search for information.

Given the nature and amount of deep-web content, it is natural that search engines would

like to include such content in their web indexes. They would then be able to lead users to

new content that they would not be able to get to otherwise. This has led to a lot of inter-

est, in both academia and industry, in the problem of offering access to deep-web content.

However, a vast majority of the research and technology has focused on addressing the

problem in narrow domains. The most prominent such approach has been in the context

of vertical search engines that each focus on content within a single narrow domain. For

example, there are used car search or job search sites that let users search over multiple

underlying sites from a single portal. These solutions, while offering access to some part of

the Deep Web, are very limited in their reach and omit large amounts of form-based sites

that do not fit into narrowly defined domains.

Our goal is to offer access to the Deep Web to users of a general-purpose search engine.

From the point of view of the search engine, we would like to include content from the

S U R F A C I N G T H E D E E P W E B 135

Deep Web at large, i.e., reach as many of the millions of HTML forms as possible. Hence,

we require a solution that works in all possible languages and domains and needs no

human supervision, i.e., one that is completely automatic. From the point of view of the

host of a deep-web site, the solution should not overwhelm the host’s resources; in other

words, it should drive only truly relevant user traffic to the site.

In this chapter, we present an overview of a solution that meets the criteria just listed. Our

approach, called surfacing, precomputes, for each HTML form, a set of queries that are

likely to retrieve useful contents from the underlying site. URLs are assembled for each of

the precomputed queries and are inserted into the search engine index. At a high level, our

approach addresses two challenges: to decide which form inputs to fill when submitting que-

ries to a form, and to find appropriate values to fill in these inputs. At its core, the approach

relies on probing an HTML form with intelligently chosen sample queries and analyzing the

distinctness of the web pages that are retrieved. We believe our solution, while extremely

simple and elegant, is very efficient and is able to effectively open up a large fraction of the

Deep Web to web search users. Our surfacing approach can be applied to any HTML form on

the Web that uses the get method (overviewed later in this chapter). This primarily excludes

forms that we would not want to be crawled anyway, e.g., forms that require user informa-

tion or result in product purchases; such forms typically use the post method.

Our deep-web surfacing system has been deployed on the Google search engine. We have

successfully crawled several million sites in several hundred domains and in over 50 lan-

guages. Currently, over 1,000 queries per second on Google.com see a result from the

Deep Web on the first page of results. On the whole, search engine users find these results

about as useful as regular search results. More details about our solution and experimental

analyses are presented in (Madhavan 2008) and (Madhavan 2009).

In the rest of this chapter, we first take a closer look at alternative solutions for offering

access to deep-web sites. We then describe a conceptual model for thinking about our

problem. We then describe our approach to predicting the useful inputs (and input combi-

nations) in a form and to predicting the values that are appropriate for text inputs. We

conclude with some remarks about our experience in deploying our solution.

Alternatives to Offering Deep-Web Access
There are two common approaches to offering access to deep-web content. The first

approach, popular with vertical search engines, is to create mediators for specific domains

(e.g., cars, books, or real estate). In this approach we could create a single master form

(the mediator) and then create semantic mappings between individual forms and the

mediator. For each query over the mediator, the relevant underlying forms are selected

based on some precomputed form summaries. The semantic mappings are used to con-

struct queries over each individual form. Content is then retrieved from each of the

selected forms and then combined before presenting them to a user. At a high level, this

approach is very similar in spirit to the implementation of modern comparative shopping

portals that retrieve offers from multiple underlying sites using web services.

136 C H A P T E R N I N E

Although adequate for vertical search, which focuses on homogenous collections of forms

within a single domain, this approach is unsuitable for a general-purpose search engine.

First, the human cost of building and maintaining the many different mediators and

mappings is high. Second, identifying the forms that are most relevant to a search engine

keyword query is extremely challenging. Only a small number of forms have to be identi-

fied; otherwise, the underlying forms can receive user traffic more than they can possibly

handle. To achieve this, at the extreme, the form summaries might need to be almost as

large as the underlying content itself. Finally, and more fundamentally, data on the Web is

about everything, and boundaries of domains are not clearly definable. Hence, creating a

mediator for the Web would be an epic challenge, and it would need to be done in over

100 languages. Thus, such an approach is unsuitable for use when the goal is to cover a

large number of forms across many domains.

The second approach is surfacing, which precomputes the most relevant form submissions

for any interesting HTML form. Each form submission generates a unique URL that can

then be indexed by a search engine like any other HTML page. This approach enables

leveraging existing search engine infrastructure. Further, it leads to a seamless inclusion of

deep-web pages into web searches, i.e., they can be inserted directly into the ranked list of

result pages in response to search queries. In addition, user traffic is directed to deep-web

content when a user clicks on such a search result, which he presumably already believes

to be relevant based on its snippet.

There are two main challenges in implementing the surfacing approach: to decide which

form inputs to fill when submitting queries to a form and to find appropriate values to fill

in these inputs. First, HTML forms typically have more than one input, and hence a naive

strategy of enumerating the entire Cartesian product of all possible values of all inputs can

result in a very large number of URLs being generated. Crawling too many URLs will drain

the resources of the web crawler, which has to crawl each of the generated URLs, and will

in all likelihood pose an unreasonable load on web servers hosting the HTML forms. Fur-

thermore, when the Cartesian product is very large, it is likely that a large number of the

result pages are empty and hence useless from an indexing standpoint. As an example, a

particular search form on Cars.com has five inputs and a Cartesian product yields over 240

million URLs, though there are only 650,000 cars for sale (http://www.cars.com). Not sur-

prisingly, the vast majority of the form submissions will have no records at all, and hence

are useless to a search engine.

Second, HTML forms typically have text inputs and might also expect a reasonable value

to be provided in the input before any results can be retrieved. The text inputs can be of

two types: generic inputs that accept arbitrary words, e.g., a keyword search box, and

typed inputs that only accept values from a specific well-defined set, e.g., a zip-code input

in the store locator in Figure 9-1.

The solution that we will describe in the rest of this chapter addresses these challenges as

follows: first, we devised what we call the informativeness test, which we use to evaluate

query templates, i.e., combinations of form inputs. For any template, we probe the form

http://www.cars.com

S U R F A C I N G T H E D E E P W E B 137

with different sets of values for the inputs in the template, and check whether the HTML

pages we obtain are sufficiently distinct from one another. Templates that generate dis-

tinct pages are deemed good candidates for surfacing. Second, we designed an algorithm

that efficiently traverses the space of query templates to identify those suitable for surfac-

ing. The algorithm balances the trade-off between trying to generate fewer URLs and try-

ing to achieve high coverage of the site’s content. Third, we designed an algorithm for

predicting appropriate input values for text boxes. The algorithm extends previous algo-

rithms (Barbosa 2004, Ntoulas 2005) for selecting keywords for generic text inputs, and

applies the informativeness test to indicate typed inputs that recognize values from com-

mon data types, such as zip codes, prices, and dates.

Basics of HTML Form Processing

Here we present a brief overview of form processing. More information can be found in

the HTML form specification (http://www.w3.org/TR/html401/interact/forms.html).

An HTML form is defined within a form tag (see Example 9-1). The action identifies the

server that will perform the query processing in response to the form submission. Forms

can have several input controls, each defined by an input tag. Input controls can be of a

number of types, the prominent ones being text boxes, select menus (defined in a separate

select tag), checkboxes, radio buttons, and submit buttons. Each input has a name, which is

typically not the name that the user sees on the HTML page. Users select input values

either by entering arbitrary keywords into text boxes or by selecting from predefined

options in select menus, checkboxes, and radio buttons. In addition, there are hidden

inputs whose values are fixed and are not visible to users interacting with the form. These

are used to provide the server additional context about the form submission (e.g., the spe-

cific site from which it came). In this chapter, we focus on the select menus and text boxes

in a form. Checkboxes and radio buttons can be treated in the same way as select menus.

When a form is submitted, the web browser sends an HTTP request with the inputs and

their values to the server using one of two methods: get or post. With get, the parameters

are appended to the action and included as part of the URL in the HTTP request (e.g., http://

jobs.com/find?src=hp&kw=chef&st=Any&sort=salary&s=go in Example 9-1). With post, the

parameters are sent in the body of the HTTP request and the URL is simply the action (e.g.,

http://jobs.com/find in Example 9-1). Hence, the URLs obtained from forms that use get are

unique (and dependent on submitted values), whereas the ones obtained with post are not.

E X A M P L E 9 - 1 . HTML code that includes a form that lets users search for jobs

<form action="http://jobs.com/find" method="get">
 <input type="hidden" name="src" value="hp"/>
 Keywords: <input type="text" name="kw"/>
 State: <select name="st"> <option value="Any"/><option value="AK"/>
 <option value="AL"/> ... </select>
 Sort By: <select name="sort"> <option value="salary"/>
 <option value="startdate"/> ... </select>
 <input type="submit" name="s" value="go"/>
</form>

http://www.w3.org/TR/html401/interact/forms.html
http://jobs.com/find?src=hp&kw=chef&st=Any&sort=salary&s=go
http://jobs.com/find?src=hp&kw=chef&st=Any&sort=salary&s=go
http://jobs.com/find

138 C H A P T E R N I N E

Since search engines identify web pages based on their URLs, the result pages from a post

are indistinguishable and hence cannot be directly inserted into a search engine index.

Furthermore, as per the HTML specification, post forms are to be used whenever submis-

sion of the form results in state changes or side effects (e.g. for shopping carts, travel reser-

vations, and logins). As already mentioned, such sites are typically not informational in

nature. For these reasons, we restrict our attention to get forms that tend to produce con-

tent more suitable for web search.

Forms that require any kind of personal information have to be excluded, for example, by

filtering away forms that include any password inputs and any words such as username,

login, etc., that are typically associated with personal information. Likewise, forms that

simply record user feedback or comments can be excluded by ignoring those containing

text area inputs.

Finally, we note that handling JavaScript events is beyond the scope of our approach (as

described in this chapter). Forms and inputs can have onselect, onclick, and onsubmit

attributes where arbitrary JavaScript code can be included. Handling these events involves

simulating JavaScript execution on all possible events. In principle, we can take advantage

of the JavaScript engines such as SpiderMonkey and V8 (see “References” on page 147) by

harnessing a web browser to perform form submissions on our behalf, thereby extending

our algorithms to handle such forms as well. Such simulations are more expensive to pro-

cess, and hence the challenge here lies in quickly identifying JavaScript forms that are

likely to yield deep-web content that can be added to the search engine index, i.e., the

eventual web page has an idempotent URL like a get request.

Queries and Query Templates

We can think of a form as an interface that lets users pose queries over a backend data-

base. Each form submission is a query that takes values for each of the inputs and returns

a subset of the records from the database. The queries belong to a restricted language as

determined by constraints on the form inputs and their values. Further, at the outset the

contents of the form site are unknown. Thus, the problem of selecting form submissions

for surfacing is essentially one of selecting a set of queries from the restricted language

over a database with unknown contents.

Some of the challenges in selecting the right set of queries arise from the ambiguous

nature of form inputs. Specifically, inputs can be of two types. First, there are selection

inputs that impose selection conditions on the database records, e.g., kw (keywords in job

descriptions) and st (state) in Example 9-1. The values for selection inputs can either be

drawn from a predefined list (through a select menu) or entered into a text input. Text

inputs may only accept values of a particular type, but in general that type is unknown to

us. Selection inputs can often be assigned a wildcard value that matches all the records in

the database. For select menus, the wildcard has to be one of the menu’s options, e.g., the

input state has the value Any. For text inputs, the wildcard is the empty string.

S U R F A C I N G T H E D E E P W E B 139

Second, there are presentation inputs that do not affect the selection of records, but only

control presentation aspects, such as the sort order or the HTML layout of the result page,

e.g., sort in Example 9-1. Distinguishing between selection and presentation inputs is one

of the challenges that a surfacing solution has to address.

Formally, suppose we were to use SQL to pose queries. We can model the contents of a

form site as a database with a single table D of m attributes. Each form submission is then

the query select * from D where P, where P represents the selection predicates expressed by

the selection inputs.

For example, suppose the form in Example 9-1 were used to pose queries over the job

table Jobs(position, city, state, desc), the submission to retrieve chef positions in the

state of California will correspond to the query select * from Jobs where state = 'CA' and

desc like '%chef%'. Note that we are assuming here that the other inputs in Example 9-1

are presentation inputs.

The problem of surfacing is fundamentally a problem of selecting a good set of queries

(form submissions). However, it is impractical, or even infeasible, to reason about the

properties of individual submissions. Millions of distinct form submissions might be possi-

ble from an individual form, but testing each submission separately might drain the

resources of the underlying site. Instead, in order to reason about collections of submis-

sions, we define the notion of query templates. A query template designates a subset of the

inputs in the form as binding inputs and the rest as free inputs. Multiple form submissions

can be generated by assigning different values to the binding inputs. Thinking in terms of

SQL queries, the query template concisely represents all queries of the form select * from

D where P', where P' includes only the selection predicates imposed by the binding inputs

in the form. The number of binding inputs is the dimension of a template. Table 9-1 shows

three examples of query templates for the form in Example 9-1.

Note that, in practice, values have to be assigned to the free inputs in a template in order

to generate valid form submissions. Ideally, we would like these values not to add any

additional selection condition to SQL queries for the template. For text inputs, we can

assign the empty string; for select menus, we assign the default value of the menu in the

T A B L E 9 - 1 . Examples of query templates, each with different binding inputs and the corresponding

collection of form submission URLs and SQL queries over the underlying Jobs database

Binding inputs Form submission URLs and SQL queries

st URL: http://jobs.com/find?src=hp&kw=&st=S&sort=salary&s=go

Query: select * from Jobs where state = S

kw URL: http://jobs.com/find?src=hp&kw=K&st=Any&sort=salary&s=go

Query: select * from Jobs where desc like '%K%'

st, kw URL: http://jobs.com/find?src=hp&kw=K&st=S&sort=salary&s=go

Query: select * from Jobs where state = S and desc like '%K%'

http://jobs.com/find?src=hp&kw=&st=S&sort=salary&s=go
http://jobs.com/find?src=hp&kw=K&st=Any&sort=salary&s=go
http://jobs.com/find?src=hp&kw=K&st=S&sort=salary&s=go

140 C H A P T E R N I N E

hope that it is a wild card value. We note that, in the interest of easing the interaction

burden on their users, forms typically support wildcard values for most, if not all, of their

inputs.

The problem of surfacing a deep-web site can now be divided into two subproblems:

• Selecting an appropriate set of query templates.

• Selecting appropriate input values for the binding inputs, i.e., instantiating the query

template with actual values. For a select menu, we use all values in the menu, but for a

text input, the values have to be predicted, and we cannot assume a priori knowledge

of the domains of the values to be considered.

We assume for simplicity of exposition that the set of values with which an input is instan-

tiated is the same for all templates in which the input is binding. However, in practice

some inputs may be correlated. For example, the values for one input (e.g., cityName) may

be dependent on the value chosen for another input (e.g., state), or multiple inputs (e.g.,

salaryMax and salaryMin) might restrict the same underlying attribute.

Selecting Input Combinations

We first describe how we can determine the inputs and combinations of inputs in the form

that are useful for surfacing. For now, we assume that we know the values for each input

in the form, i.e., text inputs and select menus are treated uniformly. The problem of

selecting values for text inputs is addressed in the next section.

As we have seen, we can model the surfacing problem as one of selecting an appropriate

set of query templates. We start by identifying some of the objectives that we should pur-

sue in selecting the right set of query templates. As we outlined earlier, a naive strategy of

enumerating the Cartesian product of all possible input values can be both wasteful (by

imposing heavy loads on the web crawler and the server hosting the form) and unneces-

sary (since a large fraction of URLs might not have any data records).

Since we would like to expose as much of the deep-web content as possible, a natural goal

for a strategy would be to maximize the coverage of the underlying database (i.e., the total

number of records retrieved), while limiting the total number of form submissions. How-

ever, given that we are generating pages that are to be placed in a search engine index, we

must address several other considerations as well.

First, it might seem that the best strategy would be to determine a few form submissions

that would each contain a large number of results. However, a web page with a large

number of results might not be the best one to be placed in a search engine index. For

example, for a used car site, it is not useful to have a single web page that has all the Hon-

das in the inventory for sale. Instead, it would be preferable to have pages for each model

of Honda or for different price ranges. Thus, we would like to generate URLs that have

neither too few nor too many records in each page.

S U R F A C I N G T H E D E E P W E B 141

Second, although the size of the main index of a search engine is quite large, it is still not

nearly enough to store all the pages that can possibly be extracted from the Deep Web.

Since the overarching goal of a search engine is to direct users to relevant websites in

response to their queries, we would much rather have diverse and important content

coming from many sites. In a sense, the number of URLs generated need not be complete,

but good enough to drive relevant traffic to the underlying sites.

Third, it is actually unnecessary for our surfacing of a website to strive for complete cover-

age. It suffices to seed the web index with enough diverse content from the site. The regu-

lar web crawler eventually will crawl the hyperlinks on the surfaced pages (e.g., links to

more results for the same query or to results of related queries), thereby eventually

increasing the coverage for the site.

In summary, our objective is to select queries for millions of diverse forms such that we

are able to achieve good (but perhaps incomplete) coverage through a small number of

submissions per site, and the surfaced pages are good candidates for selection into a search

engine’s index.

Quality of query templates

We can think of each of the stated objectives as a criterion for query templates. For exam-

ple, we would definitely not want a template that includes a presentation input as a bind-

ing input. The records retrieved by such templates can just as easily be retrieved by the

queries in a template that does not include the presentation input (since they do not affect

the selection of records), and this also generates fewer URLs.

Templates with a large dimension are not preferable, as they generate too many URLs,

many of which will retrieve no records. However, larger templates are likely to ensure

retrieval of many more records.

Templates with a smaller dimension are preferable, as they generate fewer URLs, but it is

also likely that each of their queries will retrieve far too many records. As outlined earlier,

pages with too many records do not make good candidates for placement in the index.

Further, sites might place practical limitations on the number of actual records displayed

on each page, thereby reducing the actual number of records retrieved.

Thus, we would prefer templates that (a) do not include any binding presentation inputs,

and (b) do not have too large or too small a dimension. Intuitively, the dimension of tem-

plates should be dependent on the size of the underlying database.

We now define a single test that tries to capture the criterion just stated. Before we

describe it, we consider an example that tries to illustrate the intuition. Consider two tem-

plates in the form in Example 9-1, T1 with single binding input st (State) and T2 with sin-

gle binding input sort (Sort by), and consider the set of form submissions generated by

them (Table 9-2).

142 C H A P T E R N I N E

Observe that each of the submissions for T1 retrieves job listings in a different state. As a

result, the records retrieved will be different, and hence the resulting web pages will have

very different content. We call such templates that generate web pages with very different

content informative templates. On the contrary, since there are no keywords, the records

retrieved by each of the submissions in T2 will all be the same (all jobs). Hence, the result-

ing web pages are likely to be very similar to one another. We call such templates that

generate web pages with similar content uninformative templates. In essence, our goal is to

select templates that are informative and exclude those that are uninformative.

Thus, we can evaluate a template based on the distinctness of the web pages resulting

from the form submissions it generates. We estimate the number of distinct web pages the

template generates by clustering them based on the similarity of their content.

If the number of distinct web pages is small in comparison to the number of form submis-

sions, it is very likely that either (1) the template includes a presentation input and hence

multiple sets of pages essentially have the same records, (2) the template dimension is too

high for the underlying database and hence there are a number of pages with no records,

all of which resemble one another, or (3) there is a problem in the template (or the form)

that leads to error pages that again resemble one another. If the template does not fall into

one of these categories but still generates pages with indistinct content, then it is likely to

be of only marginal value to the search engine index, and hence is unlikely to have any

impact on search engine queries.

Informativeness test

We consider the URLs generated by a given template and download the contents of the

web pages. We compute a signature for the contents of the web page resulting from each

submission and deem templates to be uninformative if they compute much fewer signa-

tures than the number of possible submissions.

T A B L E 9 - 2 . Templates can be determined to be informative or uninformative by analyzing the

similarity in content for the form submissions they generate

Query template
(binding inputs)

Template form submissions
informative/uninformative

T1 (st) http://jobs.com/find?src=hp&kw=&st=Any&sort=salary&s=go

http://jobs.com/find?src=hp&kw=&st=AK&sort=salary&s=go

http://jobs.com/find?src=hp&kw=&st=AL&sort=salary&s=go

…

web page contents are different ➝ template is informative

T2 (sort) http://jobs.com/find?src=hp&kw=&st=Any&sort=salary&s=go

http://jobs.com/find?src=hp&kw=&st=Any&sort=startdate&s=go

…

web page contents are similar ➝ template is uninformative

http://jobs.com/find?src=hp&kw=&st=Any&sort=salary&s=go
http://jobs.com/find?src=hp&kw=&st=AK&sort=salary&s=go
http://jobs.com/find?src=hp&kw=&st=AL&sort=salary&s=go
http://jobs.com/find?src=hp&kw=&st=Any&sort=salary&s=go
http://jobs.com/find?src=hp&kw=&st=Any&sort=startdate&s=go

S U R F A C I N G T H E D E E P W E B 143

Informativeness is defined with respect to a threshold τ that can be experimentally deter-

mined. Suppose Sd is the set of distinct signatures, and St is the set of all signatures. Then,

we say that T is informative if |Sd|/|St| > τ.

While the exact details of the content signature are less important, we enumerate the

important properties we want from such a function. First, the signature should be agnostic

to HTML formatting, since presentation inputs often simply change the layout of the web

page. Second, the signature must be agnostic of term ordering, since result reordering is a

common presentation operation. Third, the signature must be tolerant to minor differ-

ences in page content. A common source of differences is advertisements, especially on

commercial sites. These advertisements are typically displayed on page margins. They con-

tribute to the text on the page but do not reflect the content of the retrieved records and

hence have to be filtered away. Finally, the signature should not include the input values

themselves. A used car search site that has no red Honda Civics for sale in the zip code

94107 is likely to have an error message like “No search results for Red Honda Civic in

94107!” Likewise, the result page for a large fraction of the {color make model zip} queries

will be “No search results for {color make model} in {zip}”. The only differences between

these pages are the search terms themselves, and a signature that does not exclude the

search terms is likely to deem them different and hence deem the corresponding template

informative.

In practice, it might not be necessary to analyze all the contents of all the submissions

generated by a template. It should suffice to test a large enough sample set of all possible

submissions.

Searching for informative query templates

Our goal now is to search for the informative query templates in a form. We can adopt a

very naive strategy of considering all possible templates in a form and applying the infor-

mativeness test for each one. However, given a form with n inputs, there are 2n –1 possible

templates, and it will be computationally expensive and also unnecessary to test each pos-

sible template. Hence, an incremental strategy can be adopted instead to traverse the space

of all templates and to test only those that are likely to be informative.

Our strategy is to search through the space of templates in a bottom-up fashion, beginning

from templates with a single binding input. The main intuition leading to this strategy is

that the informativeness of a template is very likely to be dependent on templates that it

extends, i.e., has one additional binding input. If template T has dimension k and none of

the k smaller templates (of dimension k–1) that it extends is informative, then T is

unlikely to be informative.

We start by considering all templates of dimension 1. We test each of the candidate tem-

plates for informativeness. If any template of dimension 1 is deemed informative, we aug-

ment it, i.e., construct templates of dimension 2 that have a superset of its binding inputs.

144 C H A P T E R N I N E

Thus, the candidate templates are such that at least one of the templates they extend is

known to be informative (but not necessarily both). Each of the new candidate templates

is then tested to determine whether it is informative. From the informative ones of dimen-

sion 2, we continue in a similar fashion to build candidate templates of dimension 3, and

so on. We terminate when there are no informative templates of a given dimension.

We note that all candidate inputs are considered while augmenting a template. We could

choose a more aggressive strategy where we consider only informative inputs, i.e., their

corresponding template of dimension 1 was deemed informative. However, we believe

that in practice such a strategy will (erroneously) omit some informative templates. It is

not uncommon to have forms with one primary input that is required to retrieve any

results and other inputs that are essentially refinements. For example, a form with make

and color can be such that the default value for make ensures that no records are returned

by simply selecting a color. Hence, the template with binding input color is uninformative,

whereas the one with make and color is informative.

Once our search terminates, we can add the URLs generated by all the informative tem-

plates to the search engine index. A number of practical refinements can be considered to

fine-tune the search. For example, we found that we never have to consider templates

with more than three binding inputs or ones that generate too many submissions. They

are unlikely to be informative and can be pruned away easily. It is not necessary to ana-

lyze all the URLs generated by a template. It typically suffices to consider a large enough

sample.

Our experimental analyses indicate that our algorithm generates far fewer URLs than

other simpler alternate strategies. Specifically, we find that we are able to generate two

orders of magnitude fewer URLs in general over the best reasonable heuristic strategy that

does not use the informativeness test. We also found that our approach can efficiently

determine the informative templates for the form—both the number of templates tested

and the total number of form submissions downloaded during analysis are small in num-

ber. Importantly, we anecdotally found that the number of URLs we generate is depen-

dent on the size of the underlying database rather than the number of inputs in the form.

Predicting Input Values

A large number of HTML forms have text inputs. In addition, some forms with select

menus require values in their text inputs before any results can be retrieved.

We note that text inputs are typically used in two different ways. First, there are generic

inputs that practically accept any reasonable value, and the words entered in the inputs

are used to retrieve all documents in a backend text database that contain those words.

Common examples of this case are searching for books by title or by author. Second, there

are typed inputs. Such inputs only accept values from a well-defined finite set or datatype

(e.g., zip codes), or belong to some continuous but well-defined datatype (e.g., dates or

prices). Invalid entries in typed text boxes generally lead to error pages, and hence it is

S U R F A C I N G T H E D E E P W E B 145

important to identify the correct data type. Badly chosen keywords in generic text boxes

can still return some results, and hence the challenge lies in identifying a finite set of

words that extracts a diverse set of result pages.

The two types of text inputs can be treated separately. In what follows, we first describe an

algorithm to generate keywords for a generic input before considering the case of typed

inputs.

Generic text inputs

Before we describe how good candidate keywords can be identified for generic inputs, let

us consider (and dismiss) a possible alternative. Conceivably, we could have designed

word lists in various domains to enter into text inputs and tried to match each text input

with the best-fitting word list. However, we quickly realized that there are far too many

concepts and far too many domains. Furthermore, for generic inputs, even if we identified

inputs in two separate forms that correspond to the same concept in the same domain, it is

not necessarily the case that the same set of keywords will work on both sites. The best key-

words often turn out to be very site-specific. Since our goal was to scale to millions of forms

and multiple languages, we required a simple, efficient, and fully automatic technique.

We adopt an iterative probing approach. At a high level, we assign an initial seed set of

candidate keywords as values for the text input and construct a query template with the

text box as the single binding input. We generate the corresponding form submissions,

download the contents of the corresponding web pages, and extract additional keywords

from the resulting documents. The extracted keywords are then used to update the candi-

date values for the text box. We repeat the process until either we are unable to extract

further keywords or we have reached an alternate stopping condition, e.g., a sufficient

number of candidate keywords. On termination, a subset of the candidate keywords is

chosen as the set of values for the text box.

Iterative probing has been proposed in the past as a means to retrieve documents from a

text database (Barbosa 2004, Callan 2001, Ipeirotis 2002, Ntoulas 2005). However, these

approaches had the goal of achieving maximum coverage of specific sites. As a conse-

quence, they employ site-aware techniques, and the approaches are not applicable across

all domains.

At a high level, we customize iterative probing as follows:

• To determine whether the text input is in fact a generic input, we apply the informa-

tiveness test on the template in the first iteration using the initial candidate set. Our

results indicate that generic text inputs are likely to be deemed informative, but others

inputs are not.

• To select the seed set of candidate values, we analyze the contents of the web page that

has the form. We select words from a page by identifying the words most relevant to its

contents. Any reasonable word scoring measure, e.g., the popular TF-IDF measure

(Salton 1983), can be used to select the top few words on the form page.

146 C H A P T E R N I N E

• To select new candidate values at the end of each iteration, we consider the set of all

words found on all form submission pages analyzed for the template. We exclude

words that appear on too many pages, since they are likely to be part of the boilerplate

HTML that appears on every page. We also exclude words that appear on one page,

since they are likely to be nonsensical or idiosyncratic words that are not representative

of the contents of the form site.

• To select the final set of values for the text input, we consider all the candidate values

extracted from the form page or the submission pages and select from the set in the

order of their ability to retrieve the most diverse content (by analyzing the content of

the pages resulting from form submissions).

We note that placing a single maximum limit on the number of keywords per text input is

unreasonable because the contents of form sites might vary widely from a few to tens to

millions of results. We use a back-off scheme to address this problem. We start with a

small maximum limit per form. Over time, we measure the amount of search engine traf-

fic that is affected by the generated URLs. If the number of queries affected is high, then

we increase the limit for that form and restart the probing process.

Our experimental analyses indicate that iterative probing as outlined here is effective in

selecting input values for generic inputs. The corresponding form submissions are able to

expose a large number of records in the underlying database. Interestingly, we found that

text inputs and select menus in the same form often expose different parts of the under-

lying data. We were also able to establish that a web crawler can, over time, expose more

deep-web content starting with the URLs generated by our system.

Typed text inputs

Our work indicates that there are relatively few types that, if recognized, can be used to

index many domains, and therefore appear in many forms. For example, a zip code is used

as an input in many domains, including store locators, used cars, public records, and real

estate. Likewise, a date often is used as an input in many domains, such as events and arti-

cle archives.

To utilize this observation, we build on two ideas. First, a typed text input will produce

reasonable result pages only with type-appropriate values. We use this to set up informa-

tiveness tests using known values for popular types. We consider finite and continuous

types. For finite types (e.g., zip codes and state abbreviations in the U.S.), we can test for

informativeness using a sampling of the known values. For continuous types, we can test

using sets of uniformly distributed values corresponding to different orders of magnitude.

Second, popular types in forms can be associated with distinctive input names. We can use

such a list of input names, either manually provided or learned over time (e.g., as in

[Doan 2001]), to select candidate inputs on which to apply our informativeness tests.

S U R F A C I N G T H E D E E P W E B 147

Conclusion and Future Work
We described an approach to surfacing content from the Deep Web, thereby making that

content accessible through search-engine queries. The most significant requirement from

our system is that it be completely automatic (and hence scale to the Web), and retrieve

content from any domain in any language. Interestingly, these stringent requirements

pushed us toward a relatively simple and elegant solution, thereby showing that simplicity

is often the key in solving hard problems.

There are many directions for future work on surfacing the Deep Web. In particular, there

are certain patterns in forms that can be identified to broaden the coverage of our crawl.

For example, pairs of fields are often related to each other (e.g., MinPrice and MaxPrice),

and entering valid and carefully chosen pairs of values can result in surfacing more pages.

References
Barbosa, L. and J. Freire. “Siphoning Hidden-Web Data through Keyword-Based Inter-

faces.” SBBD 2004: 309–321.

Bergman, M. K. “The Deep Web: Surfacing Hidden Value.” Journal of Electronic Publishing,

2001.

Callan, J. P. and M. E. Connell. “Query-based sampling of text databases.” ACM Transac-

tions on Information Systems, 19(2): 97–130, 2001.

Doan, A., P. Domingos, and A. Y. Halevy. “Reconciling Schemas of Disparate Data

Sources: A Machine-Learning Approach.” SIGMOD Conference 2001: 509–520.

“Forms in HTML documents.” http://www.w3.org/TR/html401/interact/forms.html.

He, B., M. Patel, Z. Zhang, and K. C.-C. Chang. “Accessing the Deep Web: A survey.”

Communications of the ACM, 50(5): 95–101, 2007.

Ipeirotis, P. G. and L. Gravano. “Distributed Search over the Hidden Web: Hierarchical

Database Sampling and Selection.” VLDB 2002: 394–405.

Madhavan, J., L. Afanasiev, L. Antova, and A.Y. Halevy. “Harnessing the Deep Web:

Present and Future.” CIDR 2009.

Madhavan, J., S. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, and A. Y. Halevy. “Web-scale

Data Integration: You can only afford to Pay As You Go.” CIDR 2007.

Madhavan, J., D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Y. Halevy. “Google’s

Deep-Web Crawl.” PVLDB 1(2): 1241–1252 (2008).

Ntoulas, A., P. Zerfos, and J. Cho. “Downloading textual hidden web content through key-

word queries.” JCDL 2005: 100–109.

http://www.w3.org/TR/html401/interact/forms.html

148 C H A P T E R N I N E

Raghavan, S. and H. Garcia-Molina. “Crawling the Hidden Web.” VLDB 2001: 129–138.

Salton, G. and M. J. McGill. Introduction to Modern Information Retrieval. New York:

McGraw-Hill, 1983.

SpiderMonkey (JavaScript-C) Engine, http://www.mozilla.org/js/spidermonkey/.

V8 JavaScript Engine, http://code.google.com/p/v8/.

http://www.mozilla.org/js/spidermonkey/
http://code.google.com/p/v8/

149

Chapter 10 C H A P T E R T E N

Building Radiohead’s House of Cards
Aaron Koblin with Valdean Klump

THIS IS THE STORY OF HOW THE GRAMMY-NOMINATED MUSIC VIDEO FOR RADIOHEAD’S “HOUSE OF

Cards” was created entirely with data. Before you read the chapter, you should watch the

video. The definitive source for the video is the project’s Google Code page: http://code.

google.com/radiohead. On that site, you’ll also find several other resources, including sam-

ples of the data we used to build the video, a Flash application that lets you view the data

in 3-D, some code you can use to create your own visualizations, and a making-of video.

Definitely check it out.

How It All Started
In September 2007, I received an email from James Frost asking me if I’d be interested in

doing a music video based on data. James is a very talented music video director who has

done work for Coldplay, Norah Jones, Pearl Jam, and loads of other popular artists. He

had seen my Flight Patterns project (Figure 10-1), which used air traffic GPS data to visu-

alize commercial flight patterns and density, and wanted to meet up to talk about doing a

visualization for a music video.

A couple of months later, James, his producer Justin Glorieux, and I met up in LA for cof-

fee and we tossed some ideas around. I showed them some of the projects I’d been work-

ing on and some technologies I thought would make nice visualizations. We discussed a

http://code.google.com/radiohead
http://code.google.com/radiohead

150 C H A P T E R T E N

couple of possibilities that involved Processing, a programming language widely used for

data visualization. This direction eventually turned into the “Rest My Chemistry” video for

the band Interpol, which came out in March of 2008. If you’ve never used Processing, I

highly recommend you visit http://processing.org/ and check it out. As far as I’m concerned,

it is the best programming language for artists, designers, or anyone interested in dynamic

data visualization.

The other possibility we discussed was visualizing laser sensor data. I first encountered this

technology while working on a project for the Center for Embedded Network Sensing

(CENS) at UCLA. CENS was using lasers to detect how light shines through forest cano-

pies, and I was struck by the inherent beauty in the rendered images. James agreed after

seeing some examples, and he was impressed by the concept of using lasers to create a

piece of film. He said: “You mean you’re shooting video without cameras? You’re shooting

video without video?” He immediately saw an opportunity to do something that hadn’t

been done before. Not too long afterward, he approached Radiohead with the concept.

Hopefully, you’ll find the story of how this video was made to be an inspiration for your

own work. In this chapter, I’ll talk first about the equipment we used to capture the data.

After that, I’ll talk about the data itself, the video shoot, and the post-processing of the

data. Finally, we’ll take a look at the visualization code I provided for the Google Code site

and discuss how you can play with it yourself.

The Data Capture Equipment
The video for “House of Cards” wouldn’t have been possible without some sophisticated data

capture equipment. When you watch the video, you’ll notice that there’s a variety of scenes,

from static suburban landscapes to dynamic point clouds of vocalist Thom Yorke singing.

F I G U R E 1 0 - 1 . Still image from “Flight Patterns” (2005). (See Color Plate 22.)

http://processing.org/

B U I L D I N G R A D I O H E A D ’ S H O U S E O F C A R D S 151

In order to get both the close-ups of Thom and the landscapes, we needed to use two dif-

ferent kinds of equipment: the Velodyne Lidar and the Geometric Informatics visualization

system.

Velodyne Lidar

Velodyne is a company located just south of San Jose, California, that’s run by two guys

who compete in robot combat events like Battle Bots and Robot Wars in their spare time.

The company produces loudspeakers, stereo equipment, and (naturally) powerful laser

scanning devices, including the HDL-64E Lidar we used to capture the landscape and

party scenes in “House of Cards.” The HDL-64E’s real claim to fame is that it was used suc-

cessfully by several of the 2007 DARPA Urban Challenge vehicles, including the winning

team, to achieve environment and terrain vision. In some cases, it was these vehicles’ only

vision system.

Velodyne’s HDL-64E Lidar is a scanner with 64 laser emitters and 64 laser detectors. It

spins in a circle, gathering data 360 degrees horizontally and 26.8 degrees vertically at a

rate of over one million data points per second, which approximates to about 5 megabytes

of raw data per second. By default, the Lidar rotates at 600 RPM (10 Hz), though this can

be adjusted between 300 and 900 RPM by sending a text command through the system’s

computer serial port interface. We used the highest setting, 900 RPM, for maximum reso-

lution when scanning the static landscapes.

The range of the Lidar varies based on the reflectivity of the environment. Pavement, for

example, has a 50-meter range, while cars and foliage (which are more reflective) have a

120-meter range. The minimum range is 3 feet; anything closer, and the light reflects back

into the detector too quickly for the device to measure it.

The emitter-detector pairs are divided into two 32-laser banks, as you can see in the dia-

gram (Figure 10-2). The upper bank is directed at the higher half of the elevation angles;

in other words, it scans the top half of the Lidar’s vertical field of view. The lower bank,

conversely, scans the lower half of the elevation angles. Because the upper bank is nor-

mally directed at higher elevations, and therefore at objects farther away from the Lidar,

the distance traveled by the optical pulses is larger than the lower bank. Therefore, to

obtain good resolution at longer distances, the lasers in the upper bank are triggered three

times for every one trigger of the lower bank. You can see an example of how this affected

our data in the still image from the video, shown in Figure 10-3.

The Lidar obtains a point of data by emitting a pulse of light (aka a laser beam) and then

measuring the amount of light that comes back. As the unit runs, each of the 64 emitters

releases an optical pulse that is five nanoseconds in duration. This pulse is then focused

using a lens and is directed by mirrors out into the environment. When the light strikes

something in the environment, a portion of the light reflects back toward the Lidar. This

return light passes through the laser-receiving lens and a UV sunlight filter, which limits

the amount of light introduced by the sun; without it, natural sunlight would decrease the

system’s sensitivity and create a lot of noise in the data.

152 C H A P T E R T E N

After the return light has gone through the sunlight filter, the receiving lens focuses the

return light on a photodetector called an Avalanche Photodiode (APD), which generates

an output signal relative to the strength of the received light. The output signal from the

APD is amplified and then converted from analog to digital. This data is then sent to a dig-

ital signal processor, which determines the time of the signal return. The strength and

return time of the pulse creates one unit of data. As I said earlier, the HDL-64E model creates

over one million data points every second, which is over 5 megabytes of raw data per second.

F I G U R E 1 0 - 2 . The Velodyne LIDAR (image courtesy of Velodyne, Inc.).

F I G U R E 1 0 - 3 . A still image of the party scene, shot with the Velodyne Lidar; notice the higher resolution at the top of

this image, which was caused by the faster trigger rate of the lasers on the upper bank. (See Color Plate 23.)

Housing
(Entire unit spins
at 5–15 Hz)

Motor
Housing

Laser Receivers
(Groups of 32)

Laser Emitters
(Groups of 16)

B U I L D I N G R A D I O H E A D ’ S H O U S E O F C A R D S 153

After the data is created, the sensor outputs it to the user through a standard 100BaseT

Ethernet port. Data is continuously streamed out of this port at a frame rate equal to the

rotation rate (600 RPM would produce a 10 Hz frame rate). Included in these Ethernet

data packets are the distance, intensity, and angle data for each emitter-detector pair. The

data is then captured using an Ethernet packet capture program and, in our case, saved to

a hard drive.

Geometric Informatics

The Lidar is an incredible tool for visualizing outdoor scenery. It detects a point about the

size of a nickel, depending on distance, which works fine for large spaces, but for the con-

tours and details of a person’s face, it’s not good enough. For the close-ups of Thom Yorke

singing, we needed something else. We needed something with finer vision.

While thinking about how to do the close-up shots, I happened to think back to an outfit

called Geometric Informatics that I discovered at the 2005 SIGGRAPH conference. (Aside:

if you have a cool data visualization technology, please go to every trade show possible on

the chance that I may be attending…thank you.) It had a booth at the conference and a

demo of its system, which it calls GeoVideo.

GeoVideo is a real-time motion capture system that is particularly suited for capturing the

geometry of a person’s face. It is significantly better than the Lidar system at close-ups,

capable of discerning data points at 0.2 millimeters as opposed to 2 centimeters. With it we

were able to capture the fine details of Thom Yorke singing. The point cloud data you see

at the opening of the video was captured with GeoVideo.

If you think the drawing in Figure 10-4 looks a bit simple, that’s because the device is not

much to look at. The system looks like a beige box roughly a foot on either side with two

lenses on it. One lens projects a field of light onto the subject in front of the box, while the

other lens captures the data. The light field consists of a grid of 600,000 triangles, which,

in effect, forms an instant contour map projected onto the subject in front of the sensor.

The sensor then reads each triangle point as a point of data, which is then outputted raw

to a computer at 54 megabytes per second. The sensor can capture 180 frames per second.

F I G U R E 1 0 - 4 . The Geometric Informatics system (image courtesy of Geometric Informatics). (See Color Plate 24.)

High Frequency
Imaging Element

High Frequency
Light Source

154 C H A P T E R T E N

The advantage of the GeoVideo’s method of projecting a light field onto the subject is that

whatever is in front of the sensor isn’t required to have a grid physically drawn onto it,

wear a motion capture suit, or sit in front of a green screen with reference marks. The light

projection creates an instant, portable reference map. It’s incredibly easy.

The GeoVideo system is also capable of texture mapping, meaning that it can not only cap-

ture the data points, but also the textures between those data points. Combined together,

this results in an eerily accurate 3-D representation of an object or a person’s face. For the

“House of Cards” video, we decided to forgo the textures and use only the data points.

And even these we heavily downsampled. The result was the digital point cloud of Thom

Yorke you see in the opening scene of the video. Rather than an exact likeness of him, he

appears to be a digital avatar or soul—at least, that’s how I see it. Having seen both ver-

sions of the data—with textures and without—I can say that the version we used without

textures is much more interesting. With textures, he looked a bit like a character from a video

game. Sometimes taking away data makes the visualization more beautiful.

The Advantages of Two Data Capture Systems
It’s worth noting that, after working on this video, I became a big fan of using more than

one data capture system on the same project. Mixing technologies can have a multiplier

effect on creativity. We could have used just the Lidar or just the GeoVideo system to

shoot the entire video, but I’m glad we didn’t. It may have made the project more com-

plex, but it allowed us to be more creative. It also gave us a lot more flexibility in regard to

what we could capture.

There are a couple lessons too that you can draw from my experience of finding equip-

ment. The first is that when it comes to finding equipment for data visualization, look

everywhere. There are exciting sensing technologies being developed constantly that have

never been used artistically. If you’re about to embark on a visualization project, do some

research online, at trade shows, or at your local university. Find out if there are new ways

to capture your data that you hadn’t considered before. A different piece of equipment

might add a theme to your work or reveal data you didn’t see previously. Always be look-

ing for visualization techniques that will surprise people.

The second conclusion is a warning: if you only use one of piece of equipment, your work

may be seen as just a demo of that piece of equipment. If we had only used the Lidar to

create the “House of Cards” video, I have a slight suspicion that the video might have

become “the Lidar video.” By using both the GeoVideo system and the Lidar, the final

product couldn’t be slapped with a product label. No single tool defined the work. The

mixture of two data capture systems made the story behind the video more interesting.

The Data
Before I talk about the shoot, I want to show you a sample of the data. It’s really very sim-

ple. The following are three points I pulled arbitrarily from the data of Thom Yorke singing.

B U I L D I N G R A D I O H E A D ’ S H O U S E O F C A R D S 155

They’re in the file 2067.csv, which is the 1,067th frame in the video. Because each second

is 30 frames and the first frame is 1001.csv, these data points can be seen at around 0:36 in

the video. You can find this datafile on the Google Code site, along with the other frames:

70.05, 162.48, -79.32, 122
70.23, 165.26, -78.82, 112
70.46, 168.00, -77.55, 95

The data are in the format x, y, z, intensity. All of the data we captured was eventually

translated into this format.

The x, y, z values are relative distance measurements. The GeoVideo system, like the

Lidar, has a 0, 0, 0 point upon which it bases all other points. What 70.46 means, there-

fore, is that the point is 70.46 units along the x-axis away from the 0 point. You can scale

these numbers however you want. The intensity range is from 0 (0% white) to 256

(100% white).

You’ll find 2,000 frames’ worth of Thom singing on the Google Code site, comprising just

over a minute from the video. The audio is available as well. We also included two static

landscapes’ worth of data: the city and the cul-de-sac. They are in the HoC_DataApplications_

v1.0.zip archive that includes the viewer program.

The data you see on the site is in the same format as the data we delivered to the post-

processing studio, with one minor difference. The studio wanted RGB values for each

point, so we repeated the last value twice—in effect, using the intensity field as the color

channel.

Capturing the Data, aka “The Shoot”
We recorded the points data for “House of Cards” in May 2008 over a weekend in Palm

Beach County, Florida. Radiohead was on tour there at the time, and they like to shoot

music videos while they’re on tour to reduce their travel. For a behind-the-scenes look at

what the production was like, check out the “Making Of” video at the Google Code site I

mentioned at the beginning of this chapter.

The Outdoor Lidar Shoot

The first thing we did on arrival in Florida was set the Lidar up on the back of an old van

the production crew had rented. We used the van to capture the static landscape data you

see in the video, such as the city and the cul-de-sac.

Unlike the DARPA Urban Challenge vehicles, we did not put the Lidar on top of the vehi-

cle. Instead, we tilted it 90 degrees and mounted it to the back of the van. This meant that

the lasers would sweep the environment vertically. If picturing this is confusing, think of a

lighthouse tipped on its side and sticking off the back of the vehicle, like a tail pipe. This

meant that the lasers rotated from the street to the sky and back again. This happened 900

times per minute.

156 C H A P T E R T E N

We did it this way because it gave us a very high-resolution scan of the area. And in fact,

during post-processing, we isolated only one laser out of the 64, because all of them were

effectively scanning the same thing. As the van was moved forward, then, the laser

scanned a unique part of the environment with each revolution.

The landscape in Figure 10-5 was captured with this technique. Our van drove right down

the middle of the street. Do you see how the lines on the street are perpendicular to the

street itself? That’s because the Lidar was hanging off the back and facing downward. You

may notice as well that there are curved lines on the side of the apartment towers. This

was caused by the movement of the van coupled with the rotation and angle of the Lidar.

The shoot went very smoothly. The production team had scouted the locations, so we sim-

ply drove to each scene and scanned them in order. When we reached an area we wanted

to scan, we would slow the van down to around 10 mph and the driver would try to

achieve as steady a speed as possible. Then we’d start recording.

Unlike a camera, the Lidar doesn’t start and stop. Instead, when it’s on, it’s always rotating

and always outputting data. So, we didn’t have to turn it on and off, we just had to know

when to start recording the data. When the moment came, our assistant director Larry

Zience would shout “roll computer” as a signal to Rick Yoder, the Velodyne field engineer,

to start collecting points. (This was mildly funny to some of the crew, because normally a

director says “roll camera.”) Rick would then hit a key on his laptop and the Lidar data

would begin outputting to his hard drive. When Larry said “cut,” we stopped recording.

Rick later sent me a note about what it was like to work with a film crew:

F I G U R E 1 0 - 5 . Data captured by one laser from the Velodyne Lidar. (See Color Plate 25.)

B U I L D I N G R A D I O H E A D ’ S H O U S E O F C A R D S 157

One of the things that stood out in my mind was how hard it was to break a photogra-

pher’s habit of finding the right perspective for a shot. Conventional camera directors

are not accustomed to building a model from scans and then manipulating the camera’s

perspective in post processing. They would say, “we want to dolly the camera from here

to there and then move upward about 20 feet while panning about 45 degrees.” We

would then say, “Great! For now we’ll just stick the scanner here in the middle of the

scene and you can do that later in post.”

Figure 10-6 shows another landscape. Notice how the power lines appear jagged? There’s

a simple reason for that: it’s because the van was bumping up and down due to the

uneven road and the natural bounce of the vehicle. Typically, these “errors” would be

compensated for with gyroscopes, accelerometers, and other fancy pieces of equipment. In

our case, we wanted the errors. Not only was it cheaper and easier to process, but (in my

eyes, at least) it made the data more interesting. Perfection is an admirable goal, but not

always the most creative.

The Indoor Lidar Shoot

We also used the Lidar indoors on a film set. It was used to capture the party scenes at 3:30

and 3:55 in the video. Unlike the landscape scenes, we used all 64 of the Lidar lasers’ data

for this part of the shoot rather than just one. That’s because the party scenes are

dynamic—the points change with every rotation of the Lidar—which means they change

with each frame of the video. Therefore, you see the people in the scene moving. For this

part of the shoot, we used the normal horizontal orientation for the Lidar, which is the

reason the data appears in horizontal lines.

F I G U R E 1 0 - 6 . Another landscape image captured by the Velodyne Lidar. (See Color Plate 26.)

158 C H A P T E R T E N

To create the party scene, we recruited some film students from a nearby school. Some of

the students got very done up, thinking they would be in a Radiohead video and this was

their time to shine; little did they realize, though, that all we really wanted was the form

of their bodies. Sorry about that, guys!

If you count the horizontal lines in the image in Figure 10-7, you’ll find that there are 64.

And notice also how the top half of the image appears brighter? That’s because the 32

lasers at the top of the Lidar trigger faster than the bottom. As I noted earlier, the Lidar is

built this way because it normally scans large terrain spaces and requires a higher resolu-

tion for elevations approaching the horizon.

Unfortunately, the resolution for the Lidar is very low, about 2 centimeters per point.

That’s why the figures look so hazy. To me, this added to the meaning of the video. Parties

are often populated by people you don’t know very well, and the visualization reflects this

sense of alienation. However, the low resolution of the Lidar wasn’t going to suffice for

the close-ups on Thom Yorke. For this, we used the GeoVideo system.

The Indoor GeoVideo Shoot

The point clouds of Thom Yorke, his “lover” (played by actress Lauren Maher, who you

first see at 1:05), and a couple of other scenes (such as the hand at 3:50) were all captured

with Geometric Informatics’ GeoVideo system.

The GeoVideo system is capable of an astonishing level of realism. If you watch the demo

videos on Geometric Informatics’ website, you’ll notice that it achieves a much higher

F I G U R E 1 0 - 7 . A still from the party scene, captured by the Velodyne Lidar; there are 64 lines of data, or one for each of

the Lidar’s lasers. (See Color Plate 27.)

B U I L D I N G R A D I O H E A D ’ S H O U S E O F C A R D S 159

quality image than the point clouds in our video. Its visualizations also don’t suffer from

the interference and errors that appear in our video.

The reason our video is lower quality is that we made it this way deliberately. James Frost,

the director, didn’t want a perfect visual avatar of Thom Yorke; he wanted a fragile, eva-

nescent vision of him (see Figure 10-8). When watching the opening scene, to me this

implies that this is not Thom Yorke the man, but something closer to the singer’s soul. We

are seeing the ghost in the machine.

The low quality of the data and the frequent errors in the visualization also make it appear

as if acquiring the data was difficult. This apparent difficulty enhances the story. A clearer

image would not have conveyed the meaning we wanted.

The interference in the data was not done in post-processing; rather, it was created on set.

The production company brought a number of props with them to break up the data,

including little bits of mirror glued to a sheet of plexiglass, feathers that were dropped in

front of the scanner, and running water that was poured on a piece of plexiglass in front of

Thom. The mirrors ultimately worked the best to disrupt the data in a nonorganic way;

the feathers didn’t do a very good job of interrupting the data, and water absorbed the

light, creating only empty points in the data set.

Including both the GeoVideo and Lidar portions, the interior shoot took about 10 hours.

For all of Thom’s scenes, we were careful to back up the data on multiple hard drives for

fear that if we lost it, we might not be able to shoot it again.

F I G U R E 1 0 - 8 . A still image from the video of Radiohead singer Thom Yorke. (See Color Plate 28.)

160 C H A P T E R T E N

Processing the Data
After all the data was captured, the processing work started. The first thing we did was

send the raw Lidar data to 510 Systems, an engineering company in Berkeley, California

that has a lot of experience processing this type of data. The company assigned the project

to its in-house Lidar data guru, Pierre-Yves Droz. He’s an expert at turning raw Lidar data

into usable formats.

Pierre did two things for us after receiving the data, which we mailed to him on DVDs.

First, for the landscape scenes, he isolated a single laser out of the 64 and created a data set

of just that laser’s points. Second, he converted all of the raw Lidar data, including the

dynamic party scene data, into individual data points consisting of x, y, z, and intensity.

To convert the raw data, Pierre needed to know the precise position and orientation of

each of the Lidar’s laser emitter and detector pairs. This calibration information is provided

by Velodyne, and the parameters are unique to each Lidar unit. Pierre also used the speed

of the van to help calculate how far the Lidar moved in the real world as it rotated.

All told, we gave 510 approximately 4 gigabytes of raw data, which turned into almost 50

gigabytes of processed data in text .obj format.

Post-Processing the Data
Once we had the processed data, we took it to The Syndicate, a visual effects house in

Santa Monica, California. It rendered the scenes in 2-D and added the particle flow effects

you see in the video starting around the one-minute mark.

Brandon Davis, The Syndicate’s particle specialist, worked on the project. He sent me an

email describing why the project was unusual:

From the start, the Radiohead project had very unusual possibilities from a visualization

standpoint. With an animated data set, you get a strange paradox: view-dependent data

that can be viewed independently. It really is a “second sight,” being able to take what

one sees and view it from different perspectives, revealing the gaps in that original sight.

This opened the doors for some truly unique imagery.

He goes on to describe how he tackled the vaporization effect that you’ll notice through-

out the video:

The client wanted to degenerate the data set over time as if the points were blowing

away in a virtual wind. From the start we were looking at two distinct types of data—

static Lidar point clouds of environments and dynamic animated point clouds of the

singer Thom Yorke, the latter of which we knew would be the most challenging to

manipulate. A static data set is relatively easy to manipulate because all you need to do

is displace the points over time, so we knew it wouldn’t be too difficult to selectively

trigger portions of the data set to be affected by a velocity field, creating the effect of

buildings and trees vaporizing away with noise-based turbulence. And as we predicted,

B U I L D I N G R A D I O H E A D ’ S H O U S E O F C A R D S 161

producing that effect on the static data sets was just a matter of moving bounding forms

through the point cloud and doing a clipping test on a frame-by-frame basis. If a point

was inside a bounding object on a specific frame, it was passed on to a particle system

where it was free to move through a noise field, otherwise it remained static. This was

very interactive and easy to control and generally fast to iterate.

The dynamic point cloud of Thom singing was another matter, however. Brandon continues:

The dynamic point cloud was the biggest challenge on the project from my perspective.

While you can try to apply the same methodology from the static data set, a dynamic

data set creates a singular problem: it refreshes every frame! As soon as you release a

point and pass it on to a particle system, the original source point pops right back into a

new location, essentially re-spawning every frame. So while I could designate the points

at the tip of his nose to release and blow away, every subsequent frame there was a new

point to replace the one that blew away.

Eventually, The Syndicate figured out a simple way to add the decay effect to the dynamic

point cloud using a 2-D mask: it added the mask with a layer of particles blowing away on

top of the 3-D point cloud. This meant that there wasn’t a perfect one-for-one particle

decay like in the static landscapes, but I think the differences are imperceptible.

When I asked James, the director, why he added the particle decay effect in the first place,

he said:

“House of Cards” is essentially a love song, and as with love or friendships, in life there

are points where relationships break down. They don’t just stop; there is a series of

events, a catalyst to start the demise or decline. For the video I wanted to explore this

theme on a larger scale. It seems to me that in life we are very insular to what’s going on

in the world around us. The idea is that infrastructure can start to collapse on a large

scale around us, but because we don’t feel the effect of it, we as humans have reached a

point where we don’t care. But eventually that event will have a ripple effect and will

finally reach us on a personal level. What’s happening now with the financial institu-

tions is a perfect example of this; a bank collapses, but unless your money is in that

bank you don’t think twice about it. Then your bank collapses.

When all of the post-processing was finished, the clips were edited together by Nicholas

Wayman Harris at Union Editorial. At last, the video was complete.

Launching the Video
The “House of Cards” video was the first music video to be premiered by Google. It

launched on July 11, 2008. The Google site includes some of the video’s data, so that you

may create your own visualizations, as well as a 3-D data visualization tool. Google’s Cre-

ative Lab developed the site.

The visualization tool was written in Flash by myself and my friend Aaron Meyers. It

allows the viewer to rotate the point cloud in real time while the video is playing. To me,

162 C H A P T E R T E N

this is where the data becomes truly beautiful. The Flash application allows you to look at

parts of the video from any angle you want in real time, something traditional video

recording will never allow. You may even turn Thom Yorke’s face so that it faces away

from you, effectively holding his face as a mask up to yours and allowing you to look

through his eyes. This effect is very powerful, in my opinion. It makes the music video

tangible in a way I doubt many people have experienced before.

We also released some of the data itself—making it open source—along with a video cre-

ation tool written in the Processing programming language. We then encouraged people

to download the data and create their own videos.

I want to share the source code for the video creation tool to show you how easy it is to

create your own version of the video in Processing. This is the code that outputs frames of

Thom Yorke singing:

import processing.opengl.*;

int frameCounter = 1; //Declare a variable to store which frame we're dealing with
void setup(){ //Here we set up the program

 size(1024,768, OPENGL); //This is the render size. We'll use OpenGL to draw as
 //fast as possible

 //frameRate(30); //Uncomment to watch the animation at 30 frames per second.

 strokeWeight(1); //Draw lines at a width of 1, for now.

}

void draw(){ //Here we state the things we're going to do every frame

 background(0); //We'll use a black background

 translate(width/2, height/2); //The data has 0,0,0 at the center and we want to
 //draw that point at the center of our screen

 translate(-150,-150); //Let's adjust our center slightly

 scale(2); //Let's draw things bigger

 //rotateY(frameCounter/50.0f); //If uncommented, this makes the data rotate over
 //time

 //rotateY(mouseX/150.0); //If uncommented, this uses the mouse's horizontal
 //location to adjust the rotation

 String[] raw = loadStrings(frameCounter+".csv"); //Here we load the current frame
 //data into an array

B U I L D I N G R A D I O H E A D ’ S H O U S E O F C A R D S 163

 for(int i = 0; i < raw.length;i++){ //Now we loop through each line of the
 //raw data

 String[] thisLine = split(raw[i],','); //For each line we're going separate
 //each parameter

 float x = float(thisLine[0]); //Now we make a decimal variable for each
 //parameter
 float y = float(thisLine[1]);
 float z = float(thisLine[2]);
 int intensity = int(thisLine[3]);

 stroke(intensity*1.1,intensity*1.6,200,255); //We set the color of each point to
 //correspond to the data's
 //intensity value

 line(x,y,z,x+1,y+1,z+1); //Here we draw a little line for each point; this
 //is much faster than a more complex object and
 //we'll be drawing a lot of them
 }

 frameCounter++; //Add one to the frame variable to keep track of what frame we're
 //currently on.

 if(frameCounter>2101){ //If we get to the end of the data we'll exit the
 //program
 exit();
 println("done");
 }

 //saveFrame("renderedFrames/"+frameCounter+".tga"); //This would be a way to save out
 //a frame
 //*remember you're saving files to your harddrive!*
}

It’s not as beautiful as the data (this isn’t Beautiful Code, after all), but it works great. As

written, the code allows you to watch Thom Yorke sing the song head on, but with a cou-

ple of modifications, you can customize the experience. Here are two examples of modifi-

cations that are commented out in the previous code. The first is:

 rotateY(frameCounter/50.0f);

Uncommenting this line at the beginning of the draw function causes Thom’s face to turn

around the y-axis as the frames increase.

The second modification is:

 rotateY(mouseX/150.0);

Uncommenting this line at the beginning of the draw function allows you to make the rota-

tion a function of the mouse. You may now move Thom’s face as the frames are outputted.

164 C H A P T E R T E N

I’m sure you can think of other things to modify; many people have done things I hadn’t

even considered, which is exactly what I hoped for. Once you’ve rendered out all the

frames (by uncommenting the last line), you can put the frames together into a video with

a program like QuickTime Pro, Final Cut, or After Effects. Some of the videos created by

other people are really impressive. Check them out at the “House of Cards” YouTube

group: http://www.youtube.com/group/houseofcards.

It really is quite easy. All it takes is some beautiful data with which to get started.

Conclusion
While writing this chapter, I came up with seven thoughts that you may find useful for

capturing and presenting your own data in a beautiful way:

1. Looking at something ordinary in a new way can make it extraordinary.

You don’t need to scan the moon, a tropical island, or a fashion model to obtain data

that looks beautiful. Looking at common objects in a new way can have the same

effect. In the case of “House of Cards,” we scanned a person’s face and some common

suburban architecture. By looking at these very common things in a new way and

with new visualization techniques, we made them interesting.

2. Tell a story.

Obviously it helps when you have an amazing song to work with, but do what you

can to tell a story with your data. Just showing it to people isn’t as cool as giving it

some added meaning.

3. Using multiple visualization techniques is more interesting than using only one.

As I mentioned previously, the “House of Cards” video was made stronger by using

multiple technologies like the Velodyne Lidar, the GeoVideo system, and particle

decay post-processing effects. If all we’d done was visualize raw Lidar data, it

wouldn’t have been as interesting.

4. Think about the data, not the real world.

When we added bits of mirror to sheets of plexiglass and moved them in front of

Thom’s face as he was singing, we weren’t thinking how it would look on a video

camera. We were thinking about what it would do to the data. The data is the

product. When you look at something you want to visualize, think about the data

you will get from it.

In other words, try making a bizarre reality, and then sensing that reality. This will

make your story also weird and bizarre. Music videos often portray weirdness. Ask

yourself, how can you manipulate your data to make it stranger, more interesting,

different?

http://www.youtube.com/group/houseofcards

B U I L D I N G R A D I O H E A D ’ S H O U S E O F C A R D S 165

5. You don’t have to use all the data.

The GeoVideo system we used to scan Thom Yorke gave us much more data than we

wanted. By downsampling it heavily, we produced a more interesting point cloud.

We didn’t want a photograph.

6. Set your data free.

By allowing other people to have the data and create their own versions of the

“House of Cards” video, we allowed each person to create the version he or she

thought was the most beautiful. Everyone is always going to have an opinion as to

what looks the best. Let people indulge that opinion. It’ll be gratifying for you when

you see their work and, you never know, someone out there might do something

unexpected. That’s a good thing. Over 100,000 people have already downloaded the

data from the Google Code site and created some great videos.

7. Work with Radiohead.

I’m being a bit tongue-in-cheek here, but there’s no doubt that we were very lucky to

work with one of the world’s most innovative bands. And it wasn’t just them—it was

the whole crew. This video was made possible only with the cooperation of some

incredibly talented people, including James Frost, Velodyne, Geometric Informatics,

510 Systems, and The Syndicate. Partner up with people who are more talented than

you are, and your project will benefit enormously.

167

Chapter 11 C H A P T E R E L E V E N

Visualizing Urban Data
Michal Migurski

Introduction
WHAT MAKES DATA BEAUTIFUL, AND WHERE DOES IT COME FROM?

Beautiful data is interesting, useful, public, and free. Data must be of interest to someone,

somewhere: its collector, an audience, a constituency. It must be useful to those whose

interests demand its collection and maintenance, by helping them understand something

about their environment. Data is most beautiful when it is public and free, and available

for inspection and debate.

This is a story about Oakland Crimespotting (http://oakland.crimespotting.org), a research

project of Stamen Design (http://stamen.com) in San Francisco. Crimespotting (see Figure 11-1)

was developed as a response to the existing Oakland Police Department crime-reporting

application, CrimeWatch (http://gismaps.oaklandnet.com/crimewatch/). As with many projects,

Crimespotting didn’t start with a concrete end goal in mind; it was born out of frustration,

matured through basic technical research, and was finally made public after a traumatic

crime in Oakland focused national attention on the city. It seems that this is a typical project

arc: what starts with directed noodling often ends as a full-fledged informational project. This

one in particular is an example of what Stamen advisor Ben Cerveny calls “things informa-

tionalize”: a world of data is being moved onto the Internet piece by piece, exposed to and

collided against an open source toolchain and methodology.

http://oakland.crimespotting.org
http://stamen.com
http://gismaps.oaklandnet.com/crimewatch/

168 C H A P T E R E L E V E N

There are three parts to the story. First, we crack the nut of Oakland Police data, extracting

it from its home into a format that’s more amenable to slicing and mixing. Next, we make

it public by creating a dynamic website where it can be found and used by local citizens.

Finally, we pay attention to how it behaves, revisit initial assumptions, and respond to

public feedback.

Background
Applying modern practices in online data publishing to crime reporting is not a new idea.

Current focus on crime can be traced back to journalist/developer Adrian Holovaty’s 2005

project, Chicago Crime (http://chicagocrime.org). Chicago Crime was a prominent, early

example of a Google Maps mashup, a website created by combining code and data from

numerous other sources. In this case, the still-undocumented Google Maps API (http://

code.google.com/apis/maps/) was repurposed as a base for Chicago Police Department crime

report information. The police department’s own site was a text-driven affair that hap-

pened to include street addresses or intersections for every report. Holovaty performed

nightly collections of report data and published them on a dynamic, pan-and-zoomable, or

“slippy,” map. The service was an absolute coup, coming as it did hot on the heels of Goo-

gle’s early 2005 makeover of online mapping best practices. What had previously been

limited to primitive line drawing and static images was transformed into an infinitely

scrolling, reactive environment for geographic data.

Chicago Crime was not alone. Near the same time, developer Paul Rademacher created

Housing Maps (http://housingmaps.com), an analogous combination of apartment rental

data and visual browsing. The previous year, Michael Frumin and Jonah Perretti at the

New York arts foundation Eyebeam (http://eyebeam.org) created FundRace (http://fundrace.

org), a visualization of political contributions to presidential campaigns in the 2004 race for

the White House. Rich Gibson, Schuyler Erle, and Jo Walsh released the book Mapping

Hacks (O’Reilly), a technical guide to the new web-based cartography. A frenzy of online

activity surrounded these events, as newly informationalized data sets were aggressively

F I G U R E 1 1 - 1 . The logo for Oakland Crimespotting, a research project of Stamen Design.

http://chicagocrime.org
http://code.google.com/apis/maps/
http://code.google.com/apis/maps/
http://housingmaps.com
http://eyebeam.org
http://fundrace.org
http://fundrace.org

V I S U A L I Z I N G U R B A N D A T A 169

cut with geographic context and republished online. The broader effect of all this was a

realignment of expectations around maps: people now expected a new degree of multi-

scale interactivity that author Steven Johnson calls “The Long Zoom,” a new “way of see-

ing” that encompasses games, movies, and other media.

The impact of Google Maps on web mapping cannot be overstated, for two reasons. Goo-

gle’s decision to adopt a tile-based method for publishing its maps meant that it was possi-

ble to avoid the re-rendering cost for every view of its maps, which freed it up to generate

significantly more visually sophisticated cartography. Other maps had to look good to

compete. This decision also meant that the final visual presentation would be dynamically

assembled by the user’s browser, a technique made freshly relevant by Jesse James Garrett’s

coining of the term “AJAX” (Asynchronous JavaScript and XML), to describe a resurgence

of interest in dynamic HTML and JavaScript made possible by the high quality and settling

standards compliance of modern web browsers. The transmission of raw data was now

happening on a separate channel from cartographic presentation, a departure from the

previous practice of generating maps, address lookups, and directions on the server and

delivering the entire package to the web visitor as a single image.

Map tiles and client-side interface and data assembly throw open the possibility of small

developers creating geographical browsing applications of enormous sophistication, which

is exactly what we’ve seen happening on the Web in the intervening four years.

All of this formed the background for a preliminary effort to extract manipulable, reusable

data from Oakland’s existing, commercially licensed crime-mapping product, CrimeWatch.

This was an effort initially motivated by simple technical curiosity and an unexpected abun-

dance of free time afforded by a Christmas holiday back injury.

Cracking the Nut
Oakland CrimeWatch is an application that serves crime report information in on-demand

images with relatively primitive cartography and cartoon-like icons. CrimeWatch is opti-

mized for data display, and follows from a development approach that focuses on predict-

ing user needs rather than making raw ingredients available. The user experience of the

application is informed by “wizards,” user interfaces where the user is presented with a

sequence of dialog boxes that lead through a series of steps, performing tasks in a specific

sequence. The steps required by CrimeWatch are:

1. What: select the type or types of incidents.

2. Where: search near an address, within an administrative boundary, or near a feature,

such as a school or park.

3. When: how far into the past to search.

CrimeWatch responds with a static image showing iconic representations of individual

reports. These can be clicked for more information.

170 C H A P T E R E L E V E N

My interest in CrimeWatch was first piqued when I began to think about a way to reverse

the server-side merging process, to start with a static image and extract crime report infor-

mation with explicit location information attached: latitude and longitude values compati-

ble with those used by other geographic software systems, commonly called geolocation. This

kind of simple recognition problem is fairly well understood, and there are well-established

techniques for visual feature extraction.

First, we need to get an image to work with. This is actually more complicated than it

seems, and we must jump through a series of hoops to convince the server to generate a

crime report map. CrimeWatch stores session state on the server, so it’s necessary to simu-

late a complete set of wizard interactions by a fake user: accept terms and conditions with

a form, proceed through the multiple steps of the interactive wizard while storing HTTP

cookies and tokens along the way, and respond correctly to a series of nonstandard HTTP

redirects. The process of reconstructing the steps necessary to arrive at a useful crime

report image was the first serious hurdle for the project. The client-side HTTP proxy

Charles (http://charlesproxy.com/) and the Mozilla plug-in LiveHTTPHeaders (http://

livehttpheaders.mozdev.org/) made this process less painful than it needed to be. Interpreting

the intermediate HTML pages themselves is greatly simplified by the use of a page-scraping

library like Leonard Richardson’s BeautifulSoup (http://www.crummy.com/software/

BeautifulSoup/). BeautifulSoup is designed to make sense of the HTML “tag soup” fre-

quently found online, correcting for such common problems as improperly nested tags or

partial markup, and it allows us to read the HTML forms and JavaScript commands that

establish a complete client/server session.

It’s possible to mock up a first draft of the scraping process using simple Unix command-

line tools such as shell scripts and cURL (http://curl.netmirror.org/). The key is carefully

examining HTTP connections between the browser and server, looking for telltale bits of

information to help you reconstruct the interaction: CGI variables in URLs and POST

request bodies are the first step, showing exactly where the initial session is established

upon acceptance of terms of use. Session-based applications such as CrimeWatch make

heavy use of client-side state stored in cookies, so use of a cookie jar by your HTTP library

is a must. CrimeWatch also relies heavily on client-side JavaScript smarts beyond simple

form submissions, including the use of additional state variables, so intermediate response

pages must be parsed with a tolerant HTML parser and regular expressions to search for

details buried deep within page scripts. Finally, since many such older-generation web

applications were built and released before cross-browser dynamic HTML became a com-

mon practice among developers, it’s often necessary to spoof the User-Agent header and

pretend to be either Internet Explorer or Mozilla Firefox; other browsers are turned away

with compatibility warnings and no data.

At the end of this process, you are left with a medium-sized image bitmap, hopefully con-

taining recognizable crime report icons. The first pass at extracting the pixel locations of

each icon was simple, but slow: for every possible location in the image, compare its pixel

colors to a known icon, and report positive matches wherever the amount of difference

was below a certain threshold. Since we’re dealing with predefined icons on a background

http://charlesproxy.com/
http://livehttpheaders.mozdev.org/
http://livehttpheaders.mozdev.org/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://curl.netmirror.org/

V I S U A L I Z I N G U R B A N D A T A 171

relatively free of conflicting noise, this is actually a completely bulletproof method. The

crime icons used in CrimeWatch are unique, and easily identifiable even when partially

occluded by other icons or map features. The tool I use to perform these image checks is

NumPy (http://numpy.scipy.org/), the venerable and powerful Python array-manipulation

library. Figures 11-2 and 11-3 show a portion of a sample image from CrimeWatch, with

programmatically recognized icons outlined.

F I G U R E 1 1 - 2 . A sample image from CrimeWatch shows areas of theft, narcotics, robbery, vehicle theft, and other

crimes. (See Color Plate 29.)

F I G U R E 1 1 - 3 . The same sample image from CrimeWatch with programmatically recognized icons outlined. (See Color

Plate 30.)

http://numpy.scipy.org/

172 C H A P T E R E L E V E N

The brute-force method is unfortunately quite slow on a typical CPU, but it’s possible to

speed it up with some knowledge of the kinds of maps you’re likely to encounter. For

example, many of the crime report icons have a significant characteristic color: theft is

represented by a green bag of money, simple assault by a blue boxing glove, and prostitu-

tion by a pink letter “P”. A simple preprocessing step is a cheap scan of the image to find

pixel locations near one of these desired colors, which drastically cuts down on the num-

ber of locations to expensively check for a full-icon match. Figure 11-4 shows just the red-

dish parts of Figure 11-2 in white, an indication of likely places where the aggravated

assault marker, a red boxing glove, can be found.

A slightly more complicated prepreprocessing step is a series of scans to search for proxim-

ity of characteristic icon colors. For example, burglary is represented by a small icon of a

broken window rendered in black and white pixels. There is a lot of black on a typical

map, and a lot of white, but only areas with icons and bits of text contain both black and

white next to each other. We can find all pixels in close proximity to these two colors, and

cut down the expensive search area to a limited number of candidate pixels.

The geolocation step requires determining a location for each crime report based on its

detected pixel position in the rendered map. For this to be possible, it was helpful that

CrimeWatch always returns a predictably sized and positioned map for a given set of

inputs. For example, a map of Police Service Area #3 needs to always cover an identical

area, regardless of whether the actual crime reports present at the time were concentrated

in one corner of the area or spread out all over. CrimeWatch serves up maps with under-

lying geographical features such as streets or coastlines always in the same place. For each

possible geographic layout, it’s necessary to manually locate three widely spaced known

reference points. Street intersections are great for this, as they can be easily picked out on

F I G U R E 1 1 - 4 . Again, the same sample image from CrimeWatch, this time with the reddish parts made white to show

the red boxing glove icon (for aggravated assault) more clearly.

V I S U A L I Z I N G U R B A N D A T A 173

CrimeWatch for their (x, y) pixel locations and compared to a simple service such as

Simon Willison’s GetLatLon (http://getlatlon.com) for their (latitude, longitude) geographic

locations. Six police service areas with three reference points apiece meant manually

geolocating 18 known locations around Oakland. This needed to be done exactly once: all

future icons found in each given Service Area could be compared to the known reference

points using simple linear algebraic transforms to work out their geographic locations.

Figure 11-5 shows a map for a downtown zip code, with three geographic reference points

selected. Knowing these three points, it’s possible to triangulate the location of any other

point in the map.

The only thing left to do was to simulate a user click on each crime icon to collect further

details on the crime reports, such as its case number, date and time of day, and a simple

textual description. The end product is a database containing 100 or so reports per day.

One challenge to be found at this step is to decide what constitutes a unique report. I was

collecting reports from a moving window, which meant that each individual report would

be collected more than once, while multiple separate reports could be covered by a single

case number provided by the police department. We ended up using a tuple of case number

and text description, which was enough to cover most inconsistencies in data collection.

The code implementing this approach was executed in Twisted Python (http://www.

twistedmatrix.com/), an event-driven networking engine that made it possible to open and

maintain long-running simulated browser sessions with the CrimeWatch service. With

this code library in hand, it was possible to transform a brittle process into an ongoing

nightly collection run, and to eventually make the resulting data public in a form we

believed more useful to Oakland residents than CrimeWatch.

Nightly collections of this data formed the basis of an initial eight months of collection and

experimentation. Each evening, we’d run a web page scraper on a full combination of 13

types of crime and six Police Service Areas. Due to the one-at-a-time design of Crime-

Watch, each individual report would require its own request/response loop with the

server. We also added in considerable delays to each step—up to a minute or more

between every individual step in the process—so as to not overload the CrimeWatch

server with excessive requests. A single run would begin after midnight, and often last for

six or more hours.

F I G U R E 1 1 - 5 . A map of downtown Oakland showing three reference points for triangulation purposes. (See Color

Plate 31.)

http://getlatlon.com
http://www.twistedmatrix.com/
http://www.twistedmatrix.com/

174 C H A P T E R E L E V E N

Frequently, there were errors. CrimeWatch often would lose its head completely, and

cough up a map with no space, time, or type restrictions: all of Oakland, all crimes, for the

past three months. We had no reliable way of detecting this case, and on frequent occa-

sions reports in our database were geographically misplaced.

In this case, we felt that the occasional bad report was a small price to pay for an improved

database browsing tool, and we continued to accumulate data over the first half of 2007,

periodically releasing small experiments in visual presentation or publishing technique.

Making It Public
On August 2, 2007, journalist and Oakland Post editor-in-chief Chauncey Bailey was assas-

sinated in broad daylight just a few blocks from my downtown apartment. Although the

as-yet open case seemed an example of a political murder by a group Bailey was investigat-

ing, it refocused national attention on violent crime in Oakland. Around the same time, the

Oakland Tribune published Sean Connelly and Katy Newton’s award-winning Not Just A

Number, an interactive map of Oakland homicides (http://www.bayareanewsgroup.com/

multimedia/iba/njn/). Connelly and Newton were particularly interested in the stories

behind the city’s murder statistics. Where a majority of victims had previously been iden-

tified by mug shots, Not Just A Number made a special effort to contact surviving family

members, friends, and neighbors to put a face on the names in the news. We were inter-

ested in publishing a service complementary to these stories that offered hard facts and

current data.

We budgeted two weeks of rapid development across three people: I transformed the col-

lected data into a web-ready service, Stamen interaction designer Tom Carden developed

an immersive visual interface using Flash, and creative director Eric Rodenbeck oversaw

the visual direction and accompanying language.

Our first priority for publishing information is to show everything. The home page of the

Crimespotting site is a map (Figure 11-6), and the map shows all crime reports from the past

week. The map is positioned over most of West Oakland and downtown, with the iconic

Lake Merritt included for visual recognition. Familiar “slippy map” pan and zoom controls

make the rest of town immediately available, northwest toward Berkeley/Emeryville,

northeast toward the affluent hills and Piedmont, and southeast toward San Leandro and

beyond. This presentation is in sharp contrast to the existing wizard approach currently

published by the City of Oakland. Where the existing application requires some prior

knowledge of Oakland and assumes that the visitor is looking for crime information about

some specific place, the Crimespotting slippy map requires no existing knowledge or par-

ticular search agenda, instead supporting a more exploratory, meandering form of search

behavior.

Peter Morville describes the concept of “findability,” a newly emerging concept that

describes orientation in an information space and the ways in which data is made self-

evident through interface and description. The dynamic web-based map has come a long

way in the past four years. In 2005, one national newspaper experimenting with Google

http://www.bayareanewsgroup.com/multimedia/iba/njn/
http://www.bayareanewsgroup.com/multimedia/iba/njn/

V I S U A L I Z I N G U R B A N D A T A 175

Maps found that test subjects didn’t know they could move a map; now organizations

such as the New York Times routinely push the boundaries of information design and pre-

sentation online. With our crime database, we felt it was important to make the informa-

tion more findable by creating a data-first user interface. Data first means that it’s possible

to start with a broad visual overview, and narrow down search results by type, time, or

geography. We implemented the concept of “scented” widgets, introduced by UC Berkeley

researchers Wesley Willett, Jeffrey Heer, and Maneesh Agrawala in a 2007 paper on

embedded visualization (http://vis.berkeley.edu/papers/scented_widgets/2007-ScentedWidgets-

InfoVis.pdf):

While effective information scent cues may be based upon the underlying information

content (e.g., when the text in a web hyperlink describes the content of the linked doc-

ument, it serves as a scent), others may involve various forms of metadata, including

usage patterns. In the physical world, we often navigate in response to the activity of

others. When a crowd forms we may join in to see what the source of interest is. Alter-

natively, we may intentionally avoid crowds or well-worn thoroughfares, taking “the

road less travelled” to uncover lesser-known places of interest. In the context of infor-

mation spaces, such social navigation can direct our attention to hot spots of interest or

to under-explored regions.

The date selector interface at the bottom-left corner of the main Crimespotting map inter-

face shows a bar chart of reported crime over time (Figure 11-7), while the type selector at

F I G U R E 1 1 - 6 . The Oakland Crimespotting home page shows a map of crime reports from the past week. (See Color

Plate 32.)

http://vis.berkeley.edu/papers/scented_widgets/2007-ScentedWidgets-InfoVis.pdf
http://vis.berkeley.edu/papers/scented_widgets/2007-ScentedWidgets-InfoVis.pdf

176 C H A P T E R E L E V E N

the lower right includes discreet tooltips showing the total numbers of each report type in

the currently selected time span (Figure 11-8). Both serve dual functions: filtering and

feedback. The date selector in particular was inspired by a similar feature in blog statistics

package Measure Map (http://measuremap.com/), designed by Jeffrey Veen at Adaptive

Path, and later rolled into Google’s own Analytics product. Measure Map’s date slider in

turn was inspired by interface features on Flickr, so this is truly a case of imitation being a

sincere form of flattery. Our own enhancement is a color differentiation between bars

showing days with already loaded data (dark) and those without (light).

There’s a flip side to showing everything, and that’s information overload. We’ve intro-

duced one form of visual report type filtering that’s inspired by Apple’s Spotlight feature in

the Max OS X System Preferences dialog box: when a particular crime report on the map

or in the type selector is hovered over by the mouse for an extra few seconds, the interface

darkens, leaving brightly lit areas around mapped reports matching that type. A robbery

may be covered up by a different type of crime and thus be invisible on the map, but it can

be surfaced and accessed through the spotlight display.

One unexpected dividend of the design process was a clearer understanding of where data

specialization could become an interface commodity. We chose Flash as an implementa-

tion environment for its visual sophistication, and early on realized that it would be neces-

sary to implement our own slippy map interaction code rather than rely on one of the

many available JavaScript implementations, like OpenLayers (http://www.openlayers.org).

F I G U R E 1 1 - 7 . The date selector interface on the main Crimespotting map. (See Color Plate 33.)

F I G U R E 1 1 - 8 . The type selector shows the total numbers of each report type in the selected time span. (See Color Plate 34.)

http://measuremap.com/
http://www.openlayers.org

V I S U A L I Z I N G U R B A N D A T A 177

Panning, zooming map interactions seemed like a useful feature to apply to other projects,

so early work on crime data display resulted in a separate BSD-licensed software library

called Modest Maps (http://www.modestmaps.com/). Modest Maps made it possible to see a

clean break in functionality between data display and interaction metaphor, and the sepa-

ration of the map-specific code library has assisted in rapid development for a significant

number of unrelated projects, some from Stamen but many from outside designers and

developers.

Our second priority was to introduce a public, shareable address space for the data we col-

lect. Generally, there are just a few flavors of URL in Crimespotting:

• The map view, http://oakland.crimespotting.org, and a larger one at http://oakland.

crimespotting.org/map

• The report list view, e.g., http://oakland.crimespotting.org/crimes, http://oakland.

crimespotting.org/crimes/Robbery, http://oakland.crimespotting.org/crimes/2009-01-09, and

http://oakland.crimespotting.org/crimes/2009-01-09/Robbery

• The individual report view, e.g., http://oakland.crimespotting.org/crime/2009-01-09/

Robbery/113569

• The police beat view, e.g., http://oakland.crimespotting.org/beat/04X

Most of these URLs were designed before their associated content. In particular, they had

to conform to the ideals described in Matt Biddulph’s 2005 presentation, “Designing Data

For Reuse” (http://www.hackdiary.com/slides/xtech2005/): human-readable, suggestive, hack-

able, opaque, permanent, and canonical. We have a hierarchy of addresses that makes

sense when read aloud: “robberies on January 9th,” “police beat 04X,” and so on. Where

there is potential ambiguity—for example, date-first “/crimes/2009-01-09/Robbery” ver-

sus type-first “/crimes/Robbery/2009-01-09” or singular “/crime/Robbery” versus plural

“/crimes/Robbery”—we introduce an HTTP redirect to the proper, canonical form. The

redirect makes the URL more shareable by ensuring that my list of thefts on a given day

matches yours. One aspect of the individual report URLs that’s an unfortunate compro-

mise is the presence of a numeric primary key at the end of the address. PostgreSQL devel-

oper Josh Berkus has a special distaste for such keys, described in detail in his series on

“Primary Keyvil” (http://it.toolbox.com/blogs/database-soup/primary-keyvil-part-i-7327):

It didn’t take long (about 2 months) to discover that there was a serious problem with

having ‘id’ as the only unique column. We got multiple hearings scheduled on the cal-

endar, in the same docket, on the same date or in the same place. Were these duplicates

or two different hearings? We couldn’t tell…. The essential problem is that an auto-

number ‘id’ column contains no information about the record to which it’s connected,

and tells you nothing about that record. It could be a duplicate, it could be unique, it

could have ceased to exist if some idiot deleted the foreign key constraint.

Our excuse for including such keys is connected to a fairly loose understanding of how the

Oakland Police Department keeps its records. Although every report has a case number,

case numbers are frequently shared between different reports, and appear to link clusters

of individual charges into a single broader incident. An extreme example is case number

http://www.modestmaps.com/
http://oakland.crimespotting.org
http://oakland.crimespotting.org/map
http://oakland.crimespotting.org/map
http://oakland.crimespotting.org/crimes
http://oakland.crimespotting.org/crimes/Robbery
http://oakland.crimespotting.org/crimes/Robbery
http://oakland.crimespotting.org/crimes/2009-01-09
http://oakland.crimespotting.org/crimes/2009-01-09/Robbery
http://oakland.crimespotting.org/crime/2009-01-09/Robbery/113569
http://oakland.crimespotting.org/crime/2009-01-09/Robbery/113569
http://oakland.crimespotting.org/beat/04X
http://www.hackdiary.com/slides/xtech2005/
http://it.toolbox.com/blogs/database-soup/primary-keyvil-part-i-7327

178 C H A P T E R E L E V E N

08-056061 (http://oakland.crimespotting.org/crime/2008-08-01/murder/93014), a combination

of nine murder, theft, and aggravated assault reports from one night in August 2008.

We’ve settled on the use of case number and text description (e.g., “ASSAULT W/SEMI-

AUTOMATIC FIREARM ON PEACE OFFICER/FIREFIGHTER”) as a unique identifier, too

long for a comfortably readable URL. The numeric ID acts as a surrogate.

The outcome of this attention to URLs is to turn online crime information into a social

object. With CrimeWatch, referring to a report entails a procedural description of actions

to take: go to the wizard, select this, press that, click over here, and so on; finding specific

information about a particular report requires approximately a dozen separate clicks. With

exposed URLs, the address itself is a complete description of the crime information.

Leonard Richardson identifies the address or URI as the primary technology that led to the

WWW’s supplantation of other popular 1990s Internet protocols. In his excellent 2008

talk “Justice Will Take Us Millions Of Intricate Moves” (http://www.crummy.com/writing/

speaking/2008-QCon/), Richardson argues that a triangle of technologies makes up what we

know as the Web: the URI to address things, HTTP to move them around, and HTML to

help client software understand what to do with them. All three are critical components.

URI design in particular is enjoying a flow of popular attention, but it’s lowly old HTML

with its links and forms that makes a connected web truly possible. This explanation is a

crucial elaboration on Roy T. Fielding’s 2000 PhD thesis introducing the idea of Represen-

tational State Transfer (REST) as an architectural style (http://www.ics.uci.edu/~fielding/pubs/

dissertation/top.htm). Where possible, we try to follow these concepts by keeping the inter-

active flashy parts of Crimespotting firmly grounded in a supporting matrix of basic, 1993-

vintage web page. Our API outputs XML for Flash, RSS and Atom for feed readers, and

CSV for spreadsheets, all vital uses of information that constitute a complete API.

What launched in August 2007 included all the concepts described here, and relied on an

expensive nightly scrape of CrimeWatch. We were fairly certain that someone in city gov-

ernment would eventually notice and complain, but we were lulled into a false sense of

security by eight months of smooth sailing.

Revisiting
A short time after launch, our scraping bot began running into a wall. It was seemingly

impossible to access the CrimeWatch site for any extended length of time, even with a reg-

ular browser. Conversations with the city information technology department suggested

that once our access was publicly noted, it was considered unwelcome. The city offered

some hints of an official method of accessing the data, but the wheels of bureaucracy grind

slowly and nothing was forthcoming immediately. We regretfully took the site down, and

spent a few months considering enhancements and strategies for bringing it back. There

were two ideas we worked on during this time that ultimately never saw the light of day,

and one new feature that we made public. An outcome of the revision process has been a

more focused, pragmatic final data display.

http://oakland.crimespotting.org/crime/2008-08-01/murder/93014
http://www.crummy.com/writing/speaking/2008-QCon/
http://www.crummy.com/writing/speaking/2008-QCon/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

V I S U A L I Z I N G U R B A N D A T A 179

In thinking about how best to represent the impact of local crime on a place, conversations

with Adam Greenfield led to the idea of “violence as a force acting on a place.” One way to

envision the long-term impact of a murder or robbery on the surrounding neighborhood

is as an aura (see Figure 11-9). My initial mental model of this was a space-time sphere,

perhaps a quarter mile in space radius and a week in time radius. The visual display would

be a small spot that grows into a large stain as a time slider is moved closer to the actual

event time. Greenfield suggested inverting the sphere into a pair of cones: the actual crime

is a point, with “light cones” spreading forward and backward through time. The visual

display would be a large, diffuse circle that clarifies and focuses into a tiny point as the

time slider is moved closer to the exact event time. This display concept might be a better

fit for showing causality. The potential for a crime might be broad, spread throughout a

neighborhood. As events unfold, the malignant potential collapses to a point where a

neighbor is victimized and then subsequently spreads out again as news gets around and a

feeling of personal safety falls away.

We made a number of interactive maps exploring the cone metaphor, and discovered a

few interesting things. One thing we noticed was that certain report types have unique

visual signatures that depend on their enforcement patterns. Prostitution in particular is a

special case. Where most of the reports we display are driven by the event—a victim call-

ing in—prostitution is driven by police department decisions and scheduled crackdowns.

We routinely see weeks of quiet on the prostitution front interrupted by rapid, concen-

trated sweeps along San Pablo Avenue or International Boulevard. The cone display meta-

phor was unfortunately too esoteric for use on the primary website. The idea of time

F I G U R E 1 1 - 9 . Two methods of envisioning the long-term impact of a murder or robbery on the surrounding

neighborhood.

crime

crime

time

sp
ac

e

time

sp
ac

e

180 C H A P T E R E L E V E N

navigation on maps is fairly novel, and it was important for us to make the relationship

between report display and time control as unambiguous as possible. Cones would have to

remain in the experimental bin.

Another possible enhancement that received a great deal of serious attention during our

downtime was the concept of distributed page scraping. The reason our normal collection

process was vulnerable to interruption was that all requests had to originate from the

same Internet address, making them trivially easy to block when needed. We experi-

mented with a distributed model implemented as a Firefox browser add-on, executed in

JavaScript and controlled centrally. We hoped that a sufficient number of our technically

savvy visitors would be willing to download a browser toolbar icon and help collect data

when indicated. Requests to the CrimeWatch server would be spread over a large number

of visiting IP addresses, at unpredictable hours of the day: a pattern effectively indistin-

guishable from normal site use. An added benefit of this process was the promise of

human error correction at the end. The final screen in the mediated scraping process

included an overview of all the reports the user had just assisted in collecting, with the

possibility of marking certain matches as incorrect.

One feature developed during this time was beat-specific pages, such as this one for the

commercial and residential area between downtown and Lake Merritt: http://oakland.

crimespotting.org/beat/04X (see Figure 11-10). When we initially developed the service, we

consciously decided to ignore the administrative divisions present in CrimeWatch. Police

service areas, city council districts, zip codes, and beats all seemed to us a distraction from

location and proximity. After our launch, we quickly learned that we were wrong about

police beats. Our users informed us that citizen communication with the department

occurred via beat officers, who had specific geographic patrols and regular meetings with

local residents. The division of reports into beats was important, because it matched the

area of concern and responsibility for any given officer. Furthermore, beat boundaries fre-

quently follow obvious physical features of the city: major streets, creeks, freeways, and

railroad tracks all serve to impart a sense of neighborhood self-identification. Beat pages

are now home to a static overview map of the area showing its borders, as well as portions

of the API likely to be maximally useful to nontechnical users comfortable with common

spreadsheet software. The eventual feedback we received on this feature was invaluable.

One resident said, “We have a Beat1X NCPC (Neighborhood Crime Prevention Council)

meeting next week…I’ll be able to show up more prepared than OPD…our experience has

been that they seldom if ever have current statistics to share with us.”

The Firefox browser plug-in and associated web service controller were completed and

planned for limited, experimental rollout around the same time that the City of Oakland

informed us that we would be provided with a nightly spreadsheet of complete citywide

crime report information, along with street addresses or intersections where appropriate.

Starting in January 2008 and lasting until the present day, our data collection process has

evolved from a lengthy, error-prone affair to a rapid one blessed by the municipal creators

and stewards of the data we were working with.

http://oakland.crimespotting.org/beat/04X
http://oakland.crimespotting.org/beat/04X

V I S U A L I Z I N G U R B A N D A T A 181

Eventually, through the gracious assistance of Oakland CTO Bob Glaze, Program Manager

Ahsan Baig, and the City’s Julian Ware and Andrew Wang, we were granted a nightly

Microsoft Excel spreadsheet of official crime report data. The difference was like night and

day: where before it required hours of data processing and time lag to collect information,

now it was a matter of just a few quick minutes. Location information also became signifi-

cantly more reliable, featuring block-level street addresses and intersections in place of

colored icons.

Conclusion
Have we been successful in maintaining a data service that conforms to the ideals of

beauty we began with? The crime report data featured in Crimespotting is interesting, reg-

ularly eliciting mail from concerned residents and supporting a population of email alert

subscribers several hundred strong. Crime is a serious issue for any urban resident, but it is

especially relevant in a city with Oakland’s reputation for trouble. Is our published data use-

ful? We regularly hear from residents who use our news feeds and email alerts to stay abreast

of neighborhood events or research new places to live. Are we sufficiently free or public?

F I G U R E 1 1 - 1 0 . A beat-specific page allows citizens to provide feedback to the officers who patrol their local areas.

(See Color Plate 35.)

182 C H A P T E R E L E V E N

All site information is made available in a variety of forms suitable for a wide range of

technical proficiency, from the simple daily mail subscription or spreadsheet to the more

advanced news feed or XML-based API. The project has been a productive success, result-

ing in what we believe is a data service maximally useful to local residents.

The core lesson that we’ve learned through the creation and continued upkeep of Oak-

land Crimespotting has been a social and political one. City and government information

is being moved onto the Internet to match the expectations of a connected, wired citi-

zenry. With it comes the idea that “data is the public good,” as explained by FortiusOne

CEO Sean Gorman in a vital blog post early this year (http://blog.fortiusone.com/2009/01/28/

data-is-the-public-good-data-is-the-infrastructure-data-is-the-stimulus/). The growth of software

tools for “prosumer” visualization and analysis of data is making it increasingly important

that predictable, trustworthy, and raw data be available online in preference to over-

constrained web-based user interfaces. At the same time, emerging practices and conven-

tions around the publication of raw data are also being slowly hammered out, and in

many cases the intervention of an interested, capable outsider is required to direct atten-

tion to a problem in format or availability. Praxis talks, and change is best effected by tak-

ing the initiative to expose and improve data for the public good.

http://blog.fortiusone.com/2009/01/28/data-is-the-public-good-data-is-the-infrastructure-data-is-the-stimulus/
http://blog.fortiusone.com/2009/01/28/data-is-the-public-good-data-is-the-infrastructure-data-is-the-stimulus/

183

Chapter 12 C H A P T E R T W E L V E

The Design of Sense.us
Jeffrey Heer

I MUST CONFESS THAT I DON’T BELIEVE IN BEAUTIFUL DATA. AT LEAST NOT WITHOUT CONTEXT.

Prior to World War II, the government of the Netherlands collected detailed civil records

cataloging the demographics of Dutch citizenry. A product of good intentions, the popula-

tion register was collected to inform the administration of government services. After the

German invasion, however, the same data was used to effectively target minority popula-

tions (Croes 2006). Of the approximately 140,000 Jews that lived in the Netherlands prior

to 1940, only about 35,000 survived.

Though perhaps extreme, for me this sobering tale underscores a fundamental insight: the

“beauty” of data is determined by how it is used. Data holds the potential to improve

understanding and inform decision-making for the better, thereby becoming “beautiful”

in action. Achieving value from data requires that the right data be collected, protected,

and made accessible and interpretable to the appropriate audience. The fiasco in which

AOL released insufficiently anonymized search query data is a recent failure of protection.

Fortunately, most examples are not nearly as tragic as these tales. A more common occur-

rence is data wasting away: collected and stored in data warehouses—sometimes at great

infrastructural cost—but left underutilized. For companies and governments alike, languish-

ing data represents a lost opportunity and poor return on investment. The value of data is

proportional to people’s ability to extract meaning and inform action.

184 C H A P T E R T W E L V E

Somewhat paradoxically then, some data collections possess more (potential) beauty than

others. Clearly the choice of data to collect and the design of storage infrastructures, sche-

mas, and access mechanisms shape the potential of data to inform and enlighten while

avoiding harm. However, the “last mile” in this climb toward beauty is the problem of

human-information interaction: the means by which data is presented to and explored by

people to support analysis and communication.

This chapter presents a case study on the use of interactive visualization to help foster

beautiful data-in-action: the design of sense.us, a web application for collaborative explo-

ration and sense-making of 150 years of United States census data. I will cover the steps

we took in taking a large, government-collected data set—the U.S. census—and making it

accessible to a general audience through a suite of interactive visualizations. I will also

describe sharing and discussion mechanisms we devised to engage a community of data

voyagers in social interpretation and deliberation. Our goal was to realize the potential

beauty of data by fostering collective data analysis.

Visualization and Social Data Analysis
Visualizations are regularly used to construct meaning from data by facilitating compre-

hension, enabling exploration, and communicating findings. A large part of the human

nervous system has evolved to process visual information; in the human brain, over 70%

of the receptors and 40% of the cortex are implicated in vision processing (Ware 2004).

Visualization design leverages the capabilities of this visual processing system to enable

perception of the trends, patterns, and outliers residing within data.

Note that this is not an issue of crafting “fancy graphics.” Often a simple table or bar chart

(sans 3-D frills and specular highlights) can provide an effective presentation. The trick is

choosing the right visual representation(s) for the data and tasks at hand.

An instructive example is Anscombe’s Quartet, a collection of four data sets created by the

statistician Francis Anscombe to illustrate the importance of visualizing data (Anscombe

1973). Each data set appears identical according to common descriptive statistics

(Figure 12-1). However, plotting the data immediately reveals salient differences between

the sets.

Other writers detail the ways in which effective visual design aids interpretation, communi-

cation, and decision-making. Tufte (1997) famously argues that the disaster of the space

shuttle Challenger might have been avoided had engineers created better visual depictions of

rocket damage data (though this is not without some controversy; see Robison et al. 2002).

Visualization researchers have catalogued the space of “visual variables”—such as posi-

tion, length, area, shape, and color hue—that can be used to encode data in a visual dis-

play (Bertin 1967, Card et al. 1999). They have also studied how accurately humans decode

these visual variables when applied to different data types, such as categorical (names), ordi-

nal (rank-ordered), and quantitative (numerical) data (Cleveland & McGill 1984, Ware

2004). For instance, spatial position, as used in a bar chart or scatterplot, facilitates decoding

T H E D E S I G N O F S E N S E . U S 185

for each of these data types, while color hue ranks highly when used for category labels

but poorly when used to convey quantitative values.

In this spirit, most visualization research focuses on the perceptual and cognitive aspects of

visualization use, typically in the context of single-user interactive systems. In practice,

however, visual analysis is often a social process. People may disagree on how to interpret

data and may contribute contextual knowledge that deepens understanding. As partici-

pants build consensus, they learn from their peers. Moreover, some data sets are so large

that thorough exploration by a single person is unlikely. This suggests that to fully support

sense-making, visualizations should also support social interaction.

F I G U R E 1 2 - 1 . Anscombe’s Quartet, a collection of statistically similar data sets illustrating the use of visualization to

aid understanding.

Set A Set B Set C Set D

X Y
10

8
13

9
11
14

6
4

12
7
5

8.04
6.95
7.58
8.81
8.33
9.96
7.24
4.26

10.84
4.82
5.68

X Y
10

8
13

9
11
14

6
4

12
7
5

9.14
8.14
8.74
8.77
9.26

8.1
6.13

3.1
9.11
7.26
4.74

Y
10

8
13

9
11
14

6
4

12
7
5

X
7.46
6.77

12.74
7.11
7.81
8.84
6.08
5.39
8.15
6.42
5.73

X Y
8
8
8
8
8
8
8

19
8
8
8

6.58
5.76
7.71

8.84
8.47
7.04
5.25
12.5
5.56
7.91
6.89

Summary statistics Linear regression
µX = 9.0 σX = 3.317
µY = 7.5 σY = 2.03

Y = 3 + 0.5X
R2 = 0.67

Set BSet A

Set DSet C

Y

0
2
4
6
8

10
12
14

0 5 10 15

0
2
4
6
8

10
12
14

0 5 10 15

Y

0
2
4
6
8

10
12
14

0 5 10 15

0
2
4
6
8

10
12
14

0 5 10 15 20

X X

186 C H A P T E R T W E L V E

These observations led myself and my colleagues Martin Wattenberg and Fernanda Viégas

of IBM Research to investigate how user interfaces for visualizing data might better enable

the “social life of visualization.” We embarked on a research project in which we designed

and implemented a website, sense.us, aimed at group exploration of demographic data. The

site provides a suite of visualizations of United States census data over the last 150 years,

coupled with collaboration mechanisms to enable group-oriented data analysis.

In the rest of this chapter, I will share the design process for sense.us: how we selected and

processed the data, developed a suite of visualizations, and designed collaboration features

to enable social data analysis. I conclude by looking at the ways people worked together

through the system to construct insight from the data.

Data
Martin, Fernanda, and I came to this project in the mindset of researchers: we wanted to

understand how best to support social interaction in the visual analysis process. Our

choice of data set was not predetermined, though it was clear that a good data domain

would satisfy some specific properties: we wanted a large, real-world data set, relevant to a

general audience, and rich enough to warrant many different analyses. According to these

criteria, census data seemed ideal. I had also long been interested in making census data

more publicly accessible: I believe it is an important lens through which we might better

understand ourselves and our history.

I started by rummaging through the U.S. census bureau’s website (http://www.census.gov).

This proved only mildly productive. The census bureau provides a number of data sets at

various levels of aggregation (e.g., by zip code, metro area, region), but this rich data is

only available for recent census decades. I also realized that I was in a bit over my head. I

had much to learn about the ins and outs of how census data has been collected and mod-

eled over the decades. For example, the questions and categories used by the census

bureau have evolved over the decades, meaning that even if one has data for every year, it

does not guarantee that the data can be easily compared.

In general, one should not dive into visualization design before gaining at least a basic

familiarity with the data domain. So my next step was to meet with domain experts: my

colleagues in the Sociology and Demography departments at UC Berkeley, where I was a

graduate student at the time. Through these discussions I gained a deeper appreciation of

how the census works and which data sources demographers use to study the population.

In the process, I was introduced to a valuable resource: the Integrated Public Use Micro-

data Series (IPUMS) databases maintained by the University of Minnesota Population

Center (http://www.ipums.org).

The IPUMS-USA database consists of United States census data from 1850 to 2000. Data from

each decade in this period is included, with the exception of 1890, the records for which were

destroyed by a fire in the Commerce Building in 1921. For each decade, the IPUMS data con-

sists of representative sample data, either a 1% or 5% sample of that decade’s census records.

http://www.census.gov
http://www.ipums.org

T H E D E S I G N O F S E N S E . U S 187

Each record represents a characteristic person sampled from the population. In some cases,

persons and households with certain characteristics are over-represented, and so different

weights are associated with the records.

What makes this database particularly attractive is that the IPUMS project has developed

uniform codes and documentation for all demographic variables, facilitating analysis of

change over time. This “harmonization” is a monumental service, enabling comparative

analyses and, by extension, new insights. However, the process of fitting disparate data

into a shared schema inevitably introduces artifacts, an issue that will surface again later.

All told, the IPUMS-USA database contains 413 demographic variables, ranging over com-

mon categories such as gender, age, race, marital status, and occupation, down to esti-

mates of how many households have washers, dryers, flush toilets, and televisions

(Figure 12-2). In many cases, variables are recorded only in a subset of decades; in other

years, the variables simply were not measured.

The motto of the IPUMS project is “use it for good, never for evil.” Fortunately, the enforce-

ment of this maxim extends beyond the obligatory checkbox one must click when down-

loading a data extract. To protect individual privacy, the availability of some data has been

restricted. For example, religious affiliation is not included, and the availability of detailed

geographic data is highly limited, particularly for low-population areas.

We decided to use IPUMS-USA as the primary data source for sense.us. Using the IPUMS

web interface, we first selected samples for the years 1850–2000 (excluding 1890) and

then selected a set of variables to extract. The vast majority of variables are only available

for a subset of census decades. To enable visual exploration of long-term change, we

selected the variables that were available for at least a century. This set consisted of 22

variables, including age, sex, marital status, birthplace (either a U.S. state/territory or a

foreign country), occupation, race, school attendance, and geographic region. Due to pri-

vacy constraints, geographic data was limited to coarse-grained regions such as New

England and the west coast. The resulting data extract was a 520-megabyte GZIP file that

decompressed into a 3.3-gigabyte text file.

F I G U R E 1 2 - 2 . An excerpt of the available demographic variables in the IPUMS-USA database.

188 C H A P T E R T W E L V E

I will largely spare you the details of what happened next. A straightforward yet tedious

process of data processing, cleaning, and import ensued, ultimately resulting in a MySQL

database containing the census data extract in queryable form. To facilitate analysis, we

organized the data using a star schema (http://en.wikipedia.org/wiki/Star_schema): we stored

the census measures in a large fact table containing a column for each demographic vari-

able, with compact keys used to indicate categorical variable values. A collection of dimen-

sion tables then stored the text labels and descriptions for the values taken by each

demographic variable.

This setup provided a base for conducting exploratory analysis. We generated data sum-

maries by issuing queries that “rolled up” the data along chosen dimensions. For example,

we could isolate the relationships between age, gender, and marital status by summing the

number of people across all the other variables. In short, we had a foundation from which

we could explore the data and prototype visualizations.

Visualization
Given the size and scope of the census data, we realized early on that trying to fit all the

data within a single visualization design would be a recipe for disaster. Where we could,

we wanted to boil down the data into the simplest forms that could support a range of

analyses. As we were designing for a general audience, we settled on the approach of cre-

ating a collection of visualizations that present selected slices of the data. In essence, we

wanted to make our visualizations as simple as possible while remaining useful, but no

simpler.

Our design philosophy thus required that we figure out which data dimensions would be

of greatest interest and which visualization designs and interaction techniques would best

support active exploration of those dimensions. To do this, we began simultaneously

exploring the data itself and the space of visualization designs.

Before crafting an interface to help others explore data, I wanted to ensure that the data

was interesting enough for others to even bother. I used a number of methods to conduct

my exploration, including SQL queries, Excel, and visualization systems. The most useful

tool was Tableau, a database visualization system. Using Tableau, one can map database

fields to visual encodings in a drag-and-drop fashion; the application then queries the

database and visualizes the result. (Full disclosure: I have worked as a consultant for Tab-

leau Software.) We were thus able to prototype a number of different approaches (for

example, Figure 12-3). We generated a large collection of visualizations and shared them

with our colleagues to collect feedback. The ability to quickly evaluate visualization

approaches using the actual data saved us countless hours of experimentation and allowed

us to conserve our development efforts for our final system design.

As I explored the data, I kept track of the interesting trends, patterns, and outliers I discov-

ered. In some cases, interesting stories were found nested within a combination of dimen-

sions. For example, stratifying marital status by both age and gender over time revealed

http://en.wikipedia.org/wiki/Star_schema

T H E D E S I G N O F S E N S E . U S 189

that the average age at which females (but not males) first get married has increased by

about five years over the last century. In other cases, a single type of data plotted over

time revealed a number of interesting stories, such as the wax and wane of farmers in the

labor force and different waves of immigration from around the globe. I often found it

useful to transform the data, alternately viewing the data as absolute population numbers

or as percentages within a census decade.

Design Considerations

Prototypes in hand, Martin, Fernanda, and I then collaboratively designed the interactive

visualizations for sense.us. To do so, we first outlined a set of design considerations.

Foster personal relevance

If no one cares about the data, no one will explore it. We hypothesized that familiar

dimensions such as geography and time enable users to quickly look for themselves (or

people like them) in the data and form narratives. Given that the geographic data avail-

able to us was limited, we focused on the presentation of data over time. We also tried to

use interaction techniques that let users quickly search for data records of interest to

them, such as particular occupations or countries of origin.

Provide effective visual encodings

Naturally, we wanted to use visual encodings that would facilitate comprehension of the

data. In some cases, this task is straightforward: if I want to examine the correlation

between two numerical values, I would be hard pressed to find a better representation

than a scatterplot. In this case, we had to balance a number of trade-offs.

F I G U R E 1 2 - 3 . A prototype visualization built using Tableau showing the distribution of marital status over multiple

decades. (See Color Plate 36.)

190 C H A P T E R T W E L V E

A common way to visualize change over time is to use a line graph. However, displaying

over 200 occupations in a line graph results in a cluttered mess of occluding lines. We

instead chose stacked graphs, which visually sum multiple time series by stacking them on

top of one another (see Figures 12-4 and 12-5, later in this chapter). Our choice was influ-

enced Martin’s Baby Name Voyager visualization, a stacked graph of baby name popular-

ity that became surprisingly popular online (Wattenberg and Kriss 2006). Stacked graphs

show aggregate patterns clearly and comfortably support interactive filtering, but do so at

the cost of obscuring individual trends—perception of a trend is biased by the contour of

the series stacked beneath it. In response, we ensured that clicking a series would filter the

display so that the trend could easily be viewed in isolation.

Furthermore, we followed established cultural conventions to encode data in a fashion

familiar to many viewers (e.g., blue for boys, pink for girls). When considering how to

visualize the interaction between a number of demographic variables, rather than try to

invent something completely novel, we instead augmented a chart type already in com-

mon use by demographers: the population pyramid.

Make each display distinct

In some instances we used the same visualization type to show different data types. For

example, we used stacked graphs for both occupation and birthplace data. However, we

wanted to make each display visually distinct, so that users could recognize them at a

glance. Consequently, we constructed a unique color palette for each visualization.

Support intuitive exploration

To foster interactive exploration, we wanted to make manipulating the interface as simple

as possible. For stacked graphs, we let users type keyword searches to query for items of

interest. In other cases, we provided a collection of drop-down menus to select or filter

dimensions. We also included controls for selecting between absolute people counts and

normalized percentages. Although more advanced manipulations are possible, we found

that providing this level of control enabled a range of exploration with an uncluttered,

easy-to-learn interface.

Be engaging and playful

In addition to fostering personal relevance, we wanted interaction with our system to be

engaging and enjoyable. We thus strove for an aesthetic as well as effective presentation of

data. We designed interaction techniques and animated transitions to promote a feeling of

responsiveness and dynamism, but we did not want to take such stylistic features too far.

We wanted to enhance, not disrupt, data exploration. We varied animation styles and tim-

ing until our designs “felt right.” An animation duration of ~1 second provided transitions

that viewers could follow without slowing down the analysis process.

T H E D E S I G N O F S E N S E . U S 191

Visualization Designs

By first engaging in data exploration of our own, we were able to determine the data

dimensions we found most interesting. We applied these observations in conjunction with

our design considerations to design a suite of visualizations of the census data.

Job Voyager

The Job Voyager is a stacked graph showing the composition of the U.S. labor force over

the last 150 years (Figure 12-4). Each series represents an occupation, subdivided by sex:

blue indicates male, pink indicates female. Users can explore the data by clicking on a

series to show only the corresponding occupation, or by typing keyword queries to filter

out jobs that do not match the query. We also included drop-down menus to filter by sex

and to switch between views of absolute people count and percentage of the labor force.

These operations support exploration of both aggregate trends (e.g., the influx of women

into the labor force after World War II) and individual patterns (e.g., the rise and fall of

locomotive engineers).

We quickly realized that coloring the series solely on gender was not enough. When we

filtered the view to show only males or only females, it became difficult to differentiate

individual series. One solution is to enable perceptual discrimination by varying color sat-

uration in an arbitrary fashion. Martin then suggested a clever variation on this approach:

rather than vary colors arbitrarily, do so in a meaningful, data-driven way. We subse-

quently varied color saturation according to socio-economic index scores for each occupa-

tion. Thus a series with a higher median income was drawn darker. In practice, this

encoding worked well to improve identification of different occupations without adding

misleading or meaningless visual features to the display.

Birthplace Voyager

The Birthplace Voyager is similar in design to the Job Voyager, but instead shows the birth-

place of U.S. residents in each census year (Figure 12-5). The recorded birthplaces are either

U.S. states and territories or foreign countries. The interactive controls enable filtering by

keyword query or by continent and the display of both absolute counts and percentages.

F I G U R E 1 2 - 4 . Job Voyager visualization: (left) an overview showing the constitution of the labor force over 150 years,

and (right) a filtered view showing the percentage of farmers. (See Color Plate 37.)

192 C H A P T E R T W E L V E

The visualization supports investigation of immigration trends across the world (e.g., past

waves of immigration from Europe and current waves of immigration from Latin Amer-

ica) and within the U.S. (e.g., the changing proportion of residents in each state).

With the Birthplace Voyager, we encountered similar coloring issues as before. In this

case, we assigned color hues according to continent, plus an extra dedicated hue for U.S.

states. We then experimented with different means of varying color saturation until we

settled on using the total number of people born in the state or country across all time

slices as the backing data.

U.S. census state map and scatterplot

While the timelines of the Job and Birthplace Voyagers were designed to engage viewers

in historical narrative, we wanted to include more conventional views as well. We pro-

vided a colored state map for viewing the distribution of demographic variables for each

state. In an annotated map of population change for states between 2000 and 2005 (Fig-

ure 12-6, left), one can see substantial growth in the southwest while the population of

North Dakota has decreased. We also provided a scatterplot display to examine potential

correlations between variables. Users can map demographic variables to the x position, y

position, and size of circles representing the U.S. states. For example, one may note a cor-

relation between household income and retail sales across states (Figure 12-6, right). The

backing data for these views includes additional statistics we downloaded from the U.S.

census bureau website.

Population pyramid

Our most sophisticated visualization was an interactive population pyramid, designed to

facilitate exploration of multiple demographic variables at once (Figure 12-7). Population

pyramids (sometimes called “age-sex” pyramids) are a chart type introduced to us by our

colleagues in demography. The pyramid is divided by a vertical axis into two halves: one

for males, one for females. The y-axis represents age, often grouped into 5- or 10-year

bins, and the x-axis represents the total number of people in that age group, with values

F I G U R E 1 2 - 5 . Birthplace Voyager visualization: (left) an overview showing the distribution of birthplaces over 150

years, and (right) a filtered view showing the total number of European immigrants. (See Color Plate 38.)

T H E D E S I G N O F S E N S E . U S 193

for males increasing in one direction and values for females increasing in the opposite

direction (Figure 12-7, left). The pyramid’s shape communicates population dynamics: a

steeply tapering pyramid indicates higher mortality rates than a more cylindrical shape.

We created an interactive pyramid incorporating demographic variables in addition to age

and sex: geographic region, race, marital status, school attendance, and income level. By

default, the two sides of the pyramids split the data by sex. We relaxed this restriction and

added drop-down menus with which users could select a demographic variable and map

two values to the sides of the pyramid. For example, users looked at geographic region,

placing the west coast on one side of the pyramid and New England on the other.

We also introduced a color-encoding menu: selecting a demographic variable turns the

pyramid sides into stacked graphs depicting the prevalence of values. For example, users

can stratify the pyramid by school attendance to see what segments of the population

were in school (Figure 12-7, right). We chose a distinct color palette for each variable,

relying on existing cultural conventions where possible (e.g., blue=male, pink=female)

and using ColorBrewer (http://colorbrewer.org) to determine color choices for the other

cases. We used a gray color for bands representing missing or unknown values.

F I G U R E 1 2 - 6 . (Left) Interactive state map showing changes in each state’s population from 2000 to 2005, and (right)

scatterplot of U.S. states showing median household income (x-axis) versus retail sales (y-axis); New Hampshire and

Delaware have the highest retail sales. (See Color Plate 39.)

F I G U R E 1 2 - 7 . Population pyramid visualization: (left) a comparison of the total number of males and females in each

age group in 2000, and (right) the distribution of school attendees in 2000 (an annotation highlights the prevalence of

adult education). (See Color Plate 40.)

http://colorbrewer.org

194 C H A P T E R T W E L V E

A timeline beneath the pyramid enables temporal exploration across census decades, and

a playback feature animates changes to the pyramid over time. For example, animating

population change over time dramatically shows the baby boom rippling through society

in the post-war period. The mixture of layered colors and bubbling animation led users to

endearingly rename our population pyramid “Georgia O’Keefe’s lava lamp.”

Finally, we included support for four data measures: total people count, percentage within

decade, percentage within panel (useful when the two sides of the pyramid are dispropor-

tionate), and percentage within age group (to explore proportional differences across

ages). Our own explorations found that each measure helps reveal specific stories. For

example, viewing percentage within age group shows that elderly men are more likely to

be married than elderly women, presumably because on average women live longer and

become widows.

Implementation details

We implemented each visualization as a Java applet so we could embed it on a web page.

We chose Java over Flash partially for performance reasons, but mostly due to the avail-

ability of visualization frameworks in Java at the time. The stacked graphs and population

pyramid were built using the open source prefuse toolkit (http://prefuse.org). Backing each

visualization is a flat text file extracted from our census database. In the case of the popu-

lation pyramid, we created one file for every possible combination of demographic vari-

ables, precomputing all the relevant projections of the data. This approach eliminated the

need for data processing on the server, and resulted in a very manageable storage foot-

print: though we started with a database of over 3 gigabytes, the final deployed data was

reduced to little more than 3 megabytes! Of course, this approach does have limitations: it

impedes users from exploring novel combinations of demographic variables and compli-

cates the introduction of future visualizations requiring server-side data processing.

Collaboration
We then created the sense.us website, which couples the visualizations with collaborative

analysis mechanisms (see Figure 12-8). In the left panel is the visualization applet (Figure

12-8a) and annotation tools (Figure 12-8b). The right panel provides a graphical book-

mark trail (Figure 12-8c), providing access to views saved by the user, and a discussion

area (Figure 12-8d and e), displaying commentary associated with the current view. We

augmented the visualizations with a set of collaboration features, described in detail later:

view sharing, doubly linked discussions, graphical annotations, bookmark trails, and social

navigation via comment listings and user activity profiles.

View Sharing

When collaborating around visualizations, we reasoned that participants must be able to

see the same visual environment in order to ground one another’s actions and comments.

To this aim, sense.us provides a mechanism for bookmarking views. We tried to make

http://prefuse.org

T H E D E S I G N O F S E N S E . U S 195

application bookmarking transparent by tying it to conventional web bookmarking. The

browser’s location bar always displays a URL that links to the current state of the visualiza-

tion, defined by the settings of filtering, navigation, and visual encoding parameters. As

the visualization view changes, the URL updates to reflect the current state (Figure 12-8f),

simplifying the process of sharing a view through email, blogs, or instant messaging by

enabling users to cut-and-paste a link to the current view at any time. To conform to user

expectations, the browser’s back and forward buttons are tied to the visualization state,

allowing easy navigation to previously seen views.

Doubly Linked Discussion

To situate conversation around the visualization, we created a technique we call doubly

linked discussion. The method begins with an independent discussion interface in which

users can attach comments to particular states (or views) of a visualization. Comments are

shown on the right side of the web page and grouped into linear discussion threads (Fig-

ure 12-8e). Each comment shows the thread topic, comment text, the author’s full name,

and the time at which the comment was authored. Clicking on a comment takes the visu-

alization to a bookmarked state representing the view seen by the comment’s author.

Users can add comments either by starting a new thread or posting a reply to an existing

thread. When a “New Comment” or “Reply” link is clicked, a text editor appears at the site

where the comment will be inserted (Figure 12-8d) and the graphical annotation tools

F I G U R E 1 2 - 8 . The sense.us collaborative visualization system: (a) An interactive visualization applet, with a graphical

annotation for the currently selected comment. The visualization is a stacked time-series visualization of the U.S. labor

force, broken down by gender. Here, the percentage of the workforce in military jobs is shown. (b) A set of graphical

annotation tools. (c) A bookmark trail of saved views. (d) Text-entry field for adding comments. Bookmarks can be

dragged onto the text field to add a link to that view in the comment. (e) Threaded comments attached to the current view.

(f) URL for the current state of the application. The URL is updated automatically as the visualization state changes. (See

Color Plate 41.)

(a)

(f)

(e)

(d)

(c)
(b)

196 C H A P T E R T W E L V E

(discussed next) become active. Upon submission, the comment text and any annotations

are sent to the server and the comment listing is updated.

The interface just described is based on links from the commentary into the visualization.

Our system also provides links in the other direction: from the visualization into the dis-

cussion. As users change parameters and views in the visualization, they may serendipi-

tously happen upon a view that another person has already commented on. When this

occurs, the relevant comments will automatically appear in the righthand pane. Our intu-

ition was that this “doubly linked” discussion interface, which combines aspects of inde-

pendent and embedded discussion, would facilitate grounding and enable the

visualization itself to become a social place.

We quickly realized that our bookmarking mechanism was not sufficient to support doubly

linked discussions. To see the challenge in linking from a view state back to all comments

on that view, consider the visualization in Figure 12-8. When a user types “military” into the

top search box (Figure 12-8f), he sees all jobs whose titles begin with the string “military.” On

the other hand, if he types only “mili,” he sees all titles beginning with “mili”—but this

turns out to be the identical set of jobs. These different parameter settings result in different

URLs, and yet provide exactly the same visualization view. More generally, parameter set-

tings may not have a one-to-one mapping to visualization states. To attach discussions to

views, we therefore need an indexing mechanism that identifies visualization states that are

equivalent despite having different parametric representations.

We solve this indexing problem by distinguishing between two types of parameters: filter

parameters and view parameters. Filter parameters determine which data elements are

visible in the display. Rather than index filter parameters directly, we instead index the fil-

tered state of the application by noting which items are currently visible, thereby captur-

ing the case when different filter parameters give rise to the same filtered state. View

parameters, on the other hand, adjust visual mappings, such as selecting a normalized or

absolute axis scale. Our current system indexes the view parameters directly. The book-

marking mechanism implements this two-part index by computing a probabilistically

unique SHA-1 hash value based on both the filtered state and view parameters. These

hash values are used as keys for retrieving the comments for the current visualization

state.

Pointing via Graphical Annotation

In physical collaborations, people commonly use both speech and gesture, particularly

pointing, to refer to objects and direct conversation. In the distributed, asynchronous con-

text of the Web, graphical annotations can play a similar communicative role. We hypoth-

esized that graphical annotations would be important for both pointing behavior and

playful commentary. To add a pictorial element to a comment or point to a feature of

interest, authors can use drawing tools (Figure 12-8b) to annotate the commented view.

T H E D E S I G N O F S E N S E . U S 197

These tools allow free-form ink, lines, arrows, shapes, and text to be drawn over the visu-

alization view. The tools are similar to presentation tools such as Microsoft PowerPoint

and are intended to leverage users’ familiarity with such systems.

Comments with annotations are indicated by the presence of a small icon to the left of the

author’s name in the comment listing (see Figure 12-8e). When the mouse hovers over an

annotated comment, the comment region highlights in yellow and a hand cursor appears.

Subsequently clicking the region causes the annotation to be shown and the highlighting

to darken and become permanent. Clicking the comment again (or clicking a different

comment) will remove the current annotation and highlighting.

The graphical annotations take the form of vector graphics drawn above the visualization.

When a new comment is submitted, the browser requests the current annotation (if any)

from the visualization applet. The annotation is saved to an XML format, which is then

compressed using gzip and encoded in a base-64 string representation before being passed

to the browser. When comments are later retrieved from the server, the encoded annota-

tions are stored in the browser as JavaScript variables. When the user requests that an anno-

tation be displayed, the encoded annotations are passed to the applet, decoded, and drawn.

We refer to this approach as geometric annotation, which operates like an “acetate layer”

over the visualization, in contrast to data-aware annotations directly associated with the

underlying data. We chose to implement a free-form annotation mechanism so that we

could first study pointing behaviors in an unconstrained medium. Aside from the freedom

of expression it affords, geometric annotation also has a technical advantage: it allows

reuse of the identical annotation system across visualizations, easing implementation and

preserving a consistent user experience.

Collecting and Linking Views

In data analysis it is common to make comparisons between different ways of looking at

data. Furthermore, storytelling has been suggested to play an important role in social

usage of visualizations. Drawing comparisons and telling stories both require the ability to

embed multiple view bookmarks into a single comment.

To support such multiview comments and narratives, we created a “bookmark trail” wid-

get. The bookmark trail functions something like a shopping cart: as a user navigates

through the site, she can click a special “Add View” link to add the current view to a

graphical list of bookmarks (Figure 12-8c). Bookmarks from any number of visualizations

can be added to a trail. A trail may be named and saved, making it accessible to others.

The bookmark trail widget also functions as a short-term storage mechanism when mak-

ing a comment that includes links to multiple views. Dragging a thumbnail from the book-

mark trail and dropping it onto the text area creates a hyperlink to the bookmarked view;

users can then directly edit or delete the link text within the text editor. When the mouse

hovers over the link text, a tool-tip thumbnail of the linked view is shown.

198 C H A P T E R T W E L V E

Awareness and Social Navigation

The term social navigation refers to our tendency to navigate in the world based on the

actions or advice of others. On the Web, such navigation can be achieved by surfacing oth-

ers’ usage history to provide additional navigation options. We designed sense.us to sup-

port social navigation through comment listings and user profile pages that display recent

activity. Comment listings provide a searchable collection of all comments made within

the system, and can be filtered to focus on a single visualization (Figure 12-9). Comment

listing pages include the text and a thumbnail image of the visualization state for each

comment. Hovering over the thumbnail yields a tool tip with a larger image. Clicking a

comment link takes the user to the state of the visualization where the comment was

made, displaying any annotations included with the comment. The author’s name links to

the author’s profile page, which includes his five most recent comment threads and five

most recently saved bookmark trails. The view also notes the number of comments made

on a thread since the user’s last comment, allowing users to monitor the activity of discus-

sions to which they contribute.

Although more elaborate social navigation mechanisms are possible, we wanted to

observe system usage with just these basic options. We were particularly interested in

observing the potential interplay between data-driven exploration and social navigation.

F I G U R E 1 2 - 9 . The sense.us comment listing page; comment listings display all commentary on visualizations and

provide links to the commented visualization views. (See Color Plate 42.)

T H E D E S I G N O F S E N S E . U S 199

By allowing discussions to be retrieved unobtrusively while a user explores the data,

potentially relevant conversation can be introduced into the exploration process. Mean-

while, comment listings and indications of recent posts may help users find views of inter-

est, making social activity a catalyst for data exploration.

Unobtrusive Collaboration

We also followed a common design guideline from the field of computer-supported coop-

erative work: collaborative features should not impede individual usage. As a result, we do

not litter views with annotations by default. Rather, comments for a visualization are dis-

played unobtrusively on the right side of the screen, and graphical annotations are dis-

played “on demand” by the user.

Voyagers and Voyeurs
After these steps of data acquisition, design, and system implementation, we now had a

running website and were ready to do “field tests” with users. We deployed the system in

a set of user studies to observe how people would react to our system, what insights they

might produce, and how we might improve the site.

We invited 30 people into our lab to observe how they explored data with sense.us. Each

person could view what the previous participants had contributed to the site. We also ran

a live deployment on the IBM corporate intranet that all employees in the company could

access. From these studies, we investigated how people engaged with the visualizations

and how the collaboration features impacted their explorations. Next, I summarize some

of the more interesting usage patterns we observed.

Hunting for Patterns

Most users’ first instinct was to engage in “scavenger hunts” for interesting and amusing

observations, often driven by personal context. For example, users would search for jobs

they or their friends or family members have held, or look at birthplace data for the coun-

tries of their ancestors. Along the way, people often left comments documenting the

trends they found most interesting.

For example, participants noticed that the number of bartenders dropped to zero around

the 1930s and posted comments attributing the drop to alcohol prohibition. One person

found a peak and then steady decline in Canadian immigration as a percentage of the pop-

ulation in 1800, and posted a question pondering what may have contributed to the trend.

Yet another user noticed a drop in stockbrokers in the Great Depression, leading to the

visual commentary in Figure 12-10.

Users also found interesting trends via the population pyramid. For example, users

explored changes in marital status over time (see Figure 12-11). The green and purple

bands indicate the prevalence of separation and divorce, which increases dramatically

after 1960. One user investigated school attendance and commented that adult schooling

noticeably rises from 1960 onward (the right panel of Figure 12-7, shown previously).

200 C H A P T E R T W E L V E

In another instance, a user mapped the two sides of the pyramid to the populations of the

mid-Atlantic (i.e., New York, Pennsylvania, and New Jersey) and the west coast (see

Figure 12-12). In 1850, the population of the Gold Rush–era west coast is decidedly differ-

ent from the east, being dominated by young and middle-age males. Seen 90 years later,

the demographics are more closely aligned, though a user noted that the west coast

skewed about 10 years older.

Some users were less interested in specific views than in recurring patterns. One user was

interested in exploring careers that were historically male-dominated, but have seen

increasing numbers of females in the last half-century. The user systematically explored the

data, saving views in a bookmark trail later shared in a comment named “Women’s Rise.”

F I G U R E 1 2 - 1 0 . Annotated view of stockbrokers; the attached comment reads “Great depression ‘killed’ a lot of

brokers.” (See Color Plate 43.)

F I G U R E 1 2 - 1 1 . Population pyramid showing the distribution of marital status for each age group in (left) 1940, and

(right) 2000. (See Color Plate 44.)

T H E D E S I G N O F S E N S E . U S 201

Similarly, a more mathematically minded participant was interested in patterns of job

fluctuations, creating a trail showcasing recurring distributions. Another searched for jobs

that had been usurped by technology, such as bank tellers and telephone operators. In

each of these cases, the result was a tour or story winding through multiple views.

Making Sense of It All

As users made observations of the data, they commonly sought out explanations by post-

ing questions or hypotheses that might make sense of a trend. Many of these questions

and hypotheses attracted responses from other users, initiating a cyclic process of social

interpretation.

In our live deployment, one user commented on a scatterplot view, asking why New

Hampshire has such a high level of retail sales per capita (Figure 12-6). Another user

noted that New Hampshire does not have sales tax, and neither does Delaware, the second

highest in retail sales. In this fashion, discussion regularly involved the introduction of

contextual information not present in the visualization. For instance, users iteratively con-

structed a timeline of events to annotate military build-ups (Figure 12-8), while another

user annotated a graph of teachers with the introduction of compulsory education.

One instance of social data analysis occurred around a rise, fall, and slight resurgence in

the percentage of dentists in the labor force (Figure 12-13). The first comment noted the

trends and asked what was happening. One subject responded in a separate thread,

“Maybe this has to do with fluoridation? But there’s a bump...but kids got spoiled and had a lot of

candy??” To this another subject responded, “As preventative dentistry has become more effective,

dentists have continued to look for ways to continue working (e.g., most people see the dentist twice a

year now v. once a year just a few decades ago).” Perhaps the most telling comment, however,

included a link to a different view, showing both dentists and dental technicians. As den-

tists had declined in percentage, technicians had grown substantially, indicating specializa-

tion within the field. To this, another user asked, “I wonder if school has become too expensive

for people to think about dentistry, or at least their own practice when they can go to technical school

for less?” Visual data analysis, historical knowledge, and personal anecdote all played a role

in the sensemaking process, explicating various factors shaping the data.

F I G U R E 1 2 - 1 2 . Population pyramid comparing the populations of the west coast and mid-Atlantic regions in (left)

1850, and (right) 1940. (See Color Plate 45.)

202 C H A P T E R T W E L V E

Another role of comments was to aid data interpretation, especially in cases of unclear

meaning or anomalies in data collection. Despite the hard work of the IPUMS project,

missing data and obscure labels still occur. To enable comparison across census decades, a

shared classification scheme has to be formed. In the case of the job data, a 1950s schema

is used. The schema does not include modern jobs such as computer programmer, and

some labels are vague.

One prominent occupation was labeled “Operative,” a general category consisting largely of

skilled labor. This term had little meaning to users, one of whom asked, “What the hell is an

operative?” Others responded to reinforce the question or to suggest an explanation, e.g., “I

bet they mean factory worker.” Another subject agreed, noting that the large number of

workers and the years of the rise and fall of operatives seemed consistent with machine-

operators in factories.

In this fashion, users collectively engaged in data validation and disambiguation, often

planting “signposts” in the data to help aid interpretation by others. Overall, about 16% of

the comments referenced data naming, categorization, or collection issues.

Crowd Surfing

We observed that most users initially explored the data driven by their own interests or by

items of interest found in the overview (e.g., “Wow, look how the poor farmers died out”).

Eventually, users would run out of ideas or tire of exploration. At this point, every user

we observed then left the visualizations to explore the comment listings. Some felt that by

doing so they would find interesting views more quickly. Remarks to this effect included,

“I bet others have found even more interesting things” and “You get to stand on the shoulders of oth-

ers.” Other subjects were interested in specific people they knew or discovering what other

people had investigated. One user said, “I feel like a data voyeur. I really like seeing what other

people were searching for.”

Switching between data-driven exploration and social navigation was common: views dis-

covered via comment listings often sparked new interests and catalyzed more data analysis

F I G U R E 1 2 - 1 3 . Annotated job voyager views highlighting (left) a decline in dentists after 1930, and (right) an overall

increase in dentistry due to the rising ranks of dental technicians. (See Color Plate 46.)

T H E D E S I G N O F S E N S E . U S 203

in the visualizations. After some exploration, participants routinely returned to the listings

for more inspiration. Thus we observed a positive feedback loop between data-driven

exploration and social navigation: surfacing social activity helped catalyze exploration of

new analysis questions. In other words, users fluidly switched between the roles of voy-

ager and voyeur.

Conclusion
Based on the results of the sense.us project, we observed that the combination of interac-

tive visualization and social interpretation can help an audience more richly explore a data

set. However, as a research prototype, the sense.us site was never publicly released.

Instead, my colleagues at IBM succeeded sense.us with the launch of Many-Eyes.com: a

public website where users can upload their own data sets, visualize data using a variety of

interactive visualization components, and engage in discussion on-site or embed visualiza-

tion views in external blogs and wikis.

In a similar spirit, web services such as Swivel.com and Data360.org, and commercial

products such as Spotfire Decision Site Posters and Tableau Server, now enable users to

post visualizations to the Web and engage others in the process of social data analysis. In

parallel with the larger movement toward web-scale social computing, there remains

much to learn about how to catalyze and support social forms of data exploration. Many

exciting research questions regarding how to integrate data analysis and social activity

remain to be addressed. Open problems include the design of better social navigation cues,

richer annotation techniques, and new methods for combining users’ observations, ques-

tions, and hypotheses into a reasoned analysis story.

Though the forms of analysis we observed in sense.us were exploratory in nature, the system

had a clear educational benefit and users reported that using sense.us was both enjoyable and

informative. Furthermore, many of the observations, questions, and hypotheses generated

by users invite follow-up by trained analysts. Accessible presentations of data, coupled

with social interaction, helped a population turn data into a richer understanding of soci-

ety. I find that rather beautiful.

References
Anscombe, Francis J. (1973). “Graphs in Statistical Analysis.” American Statistician, 27, 17–21.

Bertin, Jacques. (1967). Sémiologie Graphique, Gauthier-Villars. English translation by W. J.

Berg as Semiology of Graphics, University of Wisconsin Press, 1983.

Card, Stuart K., Ben Shneiderman, and Jock D. Mackinlay. (1999). Readings in Information

Visualization: Using Vision To Think, Morgan-Kaufmann.

Cleveland, William S. and Robert McGill. (1985). “Graphical Perception and Graphical

Methods for Analyzing Scientific Data.” Science, 229(4716), 828–833.

204 C H A P T E R T W E L V E

Croes, Marnix. (2006). “The Holocaust in the Netherlands and the Rate of Jewish Sur-

vival.” Holocaust and Genocide Studies, 20(3), 474–499.

Robison, Wade, Roger Boisjoly, David Hoeker, and Stefan Young. (2002). “Representation

and Misrepresentation: Tufte and the Morton Thiokol Engineers on the Challenger.” Sci-

ence and Engineering Ethics, 8, 59–81.

Tufte, Edward R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative,

Graphics Press.

Ware, Colin. (2004). Information Visualization: Perception for Design, Second Edition, Morgan-

Kaufmann.

Wattenberg, Martin and Jesse Kriss. (2006). “Designing for Social Data Analysis.” IEEE

Transactions on Visualization and Computer Graphics, 12(4), 549–557.

205

Chapter 13 C H A P T E R T H I R T E E N

What Data Doesn’t Do
Coco Krumme

DATA DOES A GREAT MANY THINGS: IT ALLOWS US TO SEPARATE SCIENCE FROM SUPERSTITION AND THE

repeatable from the random. Over the past several decades, scientists have scaled tremen-

dously the processes for collecting, collating, and storing data. From medical decision-

making to soft drink marketing to supply chain management, we’re relying more on fact

and less on hunch. We’re letting data drive.

But data doesn’t drive everything. Over the past century, psychologists have poked holes

in the theory that people interpret data with anything close to rational equanimity. In

truth, we’re biased in our interpretation of information. Moreover, the real world does not

manifest itself with the easy probabilism of a game of dice. Rather, individuals must

extract likelihoods from perceived patterns in experience.

This chapter is a discussion of the approximations and biases that stand between data and

analysis. It describes a set of new experiments and tools to help people use data more

effectively, and draws examples from the growing literature in medical, consumer, and

financial decision-making.

Suppose I ask you to identify the odd one out from Figure 13-1.

206 C H A P T E R T H I R T E E N

The answer is immediate and trivial: the human eye can pick out the ugly duckling from

the swans. For a computer, however, the solution is not so simple: image recognition soft-

ware lags far behind the human visual system for most tasks.

Our brains are wired to quickly place new items into old bins. We’re adept at drawing

analogies and extensions: mittens and sweaters and skies go together; a cartoon mouse is

similar to a cartoon bear; a cartoon bear is similar to a real bear; these two classes of simi-

larity are themselves very different.

Even when you remove context, our visual system is remarkably skilled at picking up on

patterns. Take Figure 13-2: how would you divide the data into two sets?

Start adding dimensionality and data points, and the task becomes too complex for a per-

son; a computer, however, can parse it with some ease. You might be able to draw an

approximate curve between the two sets of dots, but a computer will be able to construct a

model to most precisely divide the data.

Now, look at the pattern in the charts in Figure 13-3, which shows the stock prices of three

major manufacturers over a 10-month interval ending in October 2005. Consider the charts

and decide on an answer before reading the next paragraph: based on the given pattern,

which one of the three stocks do you expect to increase in value over the subsequent year?

F I G U R E 1 3 - 1 . The human visual system is adept at identifying the odd one out.

F I G U R E 1 3 - 2 . We can build models to discriminate between two sets of data. (See Color Plate 47.)

X2

X1

W H A T D A T A D O E S N ’ T D O 207

Did you pick the third chart? It looks as if it is headed up at the end. Well, you’re wrong.

In fact, if you picked the first or second chart, you’re also, equally, wrong. Not one of the

stocks is upward bound, and none is trending down. Actually, the charts don’t even repre-

sent stock prices. They were randomly generated: data gibberish, one might say. But the

implanted belief that they belong to a specific company (in this case, in the manufacturing

sector) can generate all kinds of speculation. Even with real charts, unless you had specific

knowledge about a company or industry, it would be difficult to predict the future direc-

tion of a stock based on 10 months of past performance.

The tendency to create a story out of noise is sometimes dubbed the narrative fallacy.

Even if you were suspicious of the question—or read ahead too quickly—when we asked

top MBA students—some of them applying for jobs in finance—the same question, they

expressed a good deal of certainty about the direction in which such “stocks” were

headed. Some said up, some said down. When the charts were supplemented with “news

clips” randomly generated and placed in random order along the length of the chart, stu-

dents claimed a still greater certainty about their predictions—showing, perhaps, the

power of telling oneself a good story about data (Krumme [to appear]). (Consider, also,

the loose causal quips thrown around by financial journalists: “the Dow dropped 100

points on fear of rising unemployment.”)

F I G U R E 1 3 - 3 . Performance of three securities (a, b, and c) in 2005. (See Color Plate 48.)

a

b

c

208 C H A P T E R T H I R T E E N

If human beings are adept at spotting patterns, we’re masters at making up stories about

statistics. This is less problematic when we know where data comes from and what it

means; it can be disastrous when we’re faced with a lot of evidence from different sources

and high-stakes outcomes.

As a final example, before looking at the question, consider your expectations. The ten-

dency to apply a past conclusion to present analysis is called the “confirmation bias” (Lord

et al. 1979). (Think of the people you know who read only to pick out statements that

confirm a held worldview.) It’s a very real phenomenon in dealing with data. Scientists

have been observed to adhere preferentially to past hypotheses, sometimes in the face of

overwhelming evidence to the contrary (Jeng 2006). Similarly, stock traders whose bets

pay off experience a soothing release of dopamine, helping them keep their minds made

up about the behavior of the market (Lo and Repin 2002).

For the moment, let’s say you’re neither a scientist nor a stock trader, but a petty investor:

you’re given a choice between two investment options:

• Option A: win $7,400 with 100% certainty

• Option B: win $10,000 with 75% certainty, $0 with 25% certainty

There is no trick here: you can see the expected utility of each outcome. Which would you

choose?

Now, given the following two options, which would you choose?

• Option C: pay $7,400 with 100% certainty

• Option D: pay $10,000 with 75% certainty, $0 with 25% certainty

Most people choose options A and D. There’s an asymmetry here: we tend to be risk-

seeking on the downside and risk-averse on the upside. That is, the prospect of a sure win

is more appealing than a bigger win with the possibility of getting nothing, but we’d rather

bet on losing more than pony up a set amount. In addition, this combination of choices

does not maximize payoff: if we thought purely opportunistically about gains and losses,

we’d pick B and C, for a total expected utility of $1,000 instead of –$1,000 (that is, we’d be

up $2,000 compared with A+D).

This experiment, first conducted by Daniel Kahneman and Amos Tversky in the 1970s,

reveals that we don’t always think probabilistically: instead, we imagine the emotional

outcomes associated with each single outcome.

In fact, in a number of important ways, we don’t treat data as we assume we do.

When Doesn’t Data Drive?
The first section pointed out a couple of cognitive biases in the analysis of data. The

remainder of the essay is a discussion of what data doesn’t do: that is, of the various ways

in which measurement and interpretation themselves can transform data. This is not a

W H A T D A T A D O E S N ’ T D O 209

treatise on “lies, damn lies, and statistics”: we know that data can be used to purposefully

confound; here, the focus is on how it can accidentally confuse. In particular:

• Our tools for using data are inexact.

• We process data with known biases.

Although the examples that follow focus on biomedical and financial data, they are more

or less extensible. “Data” is used to mean any set of raw facts amassed from experience,

observation, or experiment.

1. More Data Isn’t Always Better

Statistics is a science of representation and approximation. The more of a system we cap-

ture or observe, the closer we can come to representing it honestly. An introductory statis-

tics text will emphasize: as you increase sample size, you decrease confidence interval

without any loss in confidence. In other words, more data helps rein in your margin of

error (see Figure 13-4).

A fine truth for the textbooks. Outside of that gossamer world, several assumptions must

be examined. First, how is your data distributed? Is it necessarily normal? In much of

finance, for example, distributions eschew normality. Biomedical data (the expression of a

trait, for example) is more frequently Gaussian, but evolution needn’t always conform to

the central limit theorem.

If the data is not normal, more data will not reduce your margin of error in the expected

manner. Karl Popper described an asymmetry in how we use data to answer questions:

F I G U R E 1 3 - 4 . The normal distribution. (See Color Plate 49.)

210 C H A P T E R T H I R T E E N

while no number of results in support of a hypothesis will ever confirm it, a single contra-

dictory result will disprove it. More data adds only marginal certainty, whereas one

instance can dissolve a century of belief.

Second, is the cost of a false positive the same as that of a false negative? Even if your data

is (or looks) normal, your interest in different outcomes might not be symmetrical. The cost

of failing to detect a life-threatening illness may be greater, for example, than the cost of

incorrect diagnosis. In such a case, data that improves the precision of diagnosis (by cutting

out false negatives) will be more useful than reams of data to winnow down false positives.

2. More Data Isn’t Always Easy

Data doesn’t necessarily scale. One of the trite maxims of our information age is that it’s

just as easy to process 10 bits as it is 10 terabytes, whereas 10 billion widgets are much

more expensive to make than 10.

In some cases, the costs of cleaning and processing data are not trivial. This is particularly

true when verification requires a human eye, such as reading meaning into X-rays or

transcribing data coded in a questionnaire. In Red Queen fashion,* better computers and

the ability to collect more and more data has driven (and been driven by) the develop-

ment of new tools to parse it and new ways to use it.

There are also cognitive costs that accompany more information. Whether we’re choosing

between jams at the supermarket or 401(k) plans, research has shown that as the number

of options increases, it takes us longer to decide, we become more likely to give up with-

out choosing anything, and we are less satisfied with any choice we make (Iyenger and

Lepper 2000).

Finally, a subtle cost: more data can begin to blind us to other possibilities, especially if

we’re responsible for its collection and collation. It’s hard not to imagine that seeing more

data means a hypothesis is better supported—a corollary of the confirmation bias and

sampling issues discussed earlier.

3. Data Alone Doesn’t Explain

People explain. Correlation and causality, you may have heard, make strange bedfellows.

Given two variables correlated in a statistically significant way, causality can work for-

ward, backward, in both directions, or not at all. Statisticians have made a hobby (not to

mention a number of blogs) of chronicling the abuses of correlation, like old ladies cluck-

ing at the downfall of traditional values in the modern world.

Journalists are the preferred targets of such statistical “tsks.” A recent article in the Wall Street

Journal (Shellenbarger 2008), for example, suggested that because premarital cohabitation is

* Lewis Carroll’s Red Queen, from Alice in Wonderland, proclaims, “It takes all the running you can
do, to keep in the same place.” This idea has been used to describe a system that, due to an arms
race of external pressures, must continue to co-evolve.

W H A T D A T A D O E S N ’ T D O 211

correlated with higher rates of divorce, unwed couples could avoid living together in order to

improve their chances of staying together after marriage. The research described never sug-

gested a causal link, but the journalist offered her own advice to couples based on the “data.”

The substitution of correlation with causality need not be so explicit. When a scientific

research project is undertaken, there exists the assumption that correlation, if discovered,

would imply causation, albeit unknown. Else, why seek to answer a research question at

all: large-scale search for correlation without causation is aleatory computation, not sci-

ence. Even with so-called big data, science remains an intensely hypothesis-driven process.

The limits of empirical research is not grounds to throw up our hands, only to be careful to

push discovery forward without getting rosy-eyed about causality. Creating stories about

data is only human: it’s the ability to revise consistently that makes a story sound.

4. Data Isn’t Good for a Single Answer

Descriptive statistics can hide detail. The charts in Figure 13-5, for example, show four distri-

butions that look dramatically different, yet share the same mean and variance. These two

pillars of descriptive statistics—mean and variance—tell you very little about distribution

(Anscombe 1973).

When using data for decision-making, we tend to treat distributions as if they’re good for one

answer. We may need to base a binary decision—should the U.S. declare war? should the

FDA approve this drug? who is predicted to win the election?—or a summary statement—

how well-off are Americans? what will the Earth’s climate look like in five years?—on data

that’s indeterminate. Even if variance is reported, the decision is what matters.

F I G U R E 1 3 - 5 . Anscombe’s quartet: each data set has the same mean and variance.

0

4

8

12

0 105 15 20 0 10 20

I

0

4

8

12

0 10 20 0 10 20

III IV

II

212 C H A P T E R T H I R T E E N

People think in terms of outcomes, not distributions. Consider a personal financial deci-

sion: how much should I invest in stocks, bonds, and cash? Even if past financial perfor-

mance properly predicted future returns (which, as even the financial advisors are legally

required to admit, it doesn’t)—that is, even if we knew the shape of the distribution—

we’d still have a number of risk and reward pairs from which to elect, and a number of

possible outcomes within those distributions. With a given risk level, one’s retirement

could be characterized by abundance or by poverty, and it’s difficult to imagine these sev-

eral futures concurrently (one tends to suppose the average, or sometimes the best-case

scenario—the so-called “planning fallacy”).

A team of decision scientists has created an interesting tool to help investors understand

the range of possibilities inherent in a distribution of outcomes (see Figure 13-6). Partici-

pants can adjust 100 “probability units” to form a distribution curve. For example, they

might place all of their units at 75% of salary, or distribute it evenly among a variety of per-

centage levels. Then, they press go and watch as the units, one by one, disappear at random.

The last one standing is the “outcome” (Goldstein et al. 2008). Thus, a level of risk is not an

ambiguous distribution curve but a set of (here, 100) equally probable possibilities.

Biologist Stephen Jay Gould further illuminates the problem with equating descriptive sta-

tistics with outcomes. “The Median is not the Message” is Gould’s reaction to a diagnosis

of cancer and the warning that he had “eight months to live.” Literature on the cancer

revealed a right-skewed distribution based on a “prescribed set of circumstances”—that

is, a long tail of long-lived survivors, under the assumption of past treatment conditions.

F I G U R E 1 3 - 6 . A tool by Goldstein et al. helps people understand a distribution as a set of outcomes. (See Color Plate

50.)

W H A T D A T A D O E S N ’ T D O 213

To claim “eight months” was to miss the bulk of the picture. As Gould elegantly character-

izes the brutishness of statistics:

[E]volutionary biologists know that variation itself is nature’s only irreducible essence.

Variation is the hard reality, not a set of imperfect measures for a central tendency.

Means and medians are the abstractions.

5. Data Doesn’t Predict

Building models (to forecast tomorrow’s weather, the outcome of the 2012 Super Bowl, or

the fate of the Fortune 500) is a seductive art. Indeed, an important extension of science’s

prime venture—to explain the world around us—is to try to understand the world as it

will be.

In certain domains, namely in controlled -cosms of the physical world, it is possible to pre-

dict an outcome with near certainty. Future results will track past events with high fidelity:

water will turn to gas when heated; a falling object will accelerate at 9.8 meters per second

squared in a vacuum; if a creature’s heart stops, it’s dead. Epistomologically, Popper’s

notion of falsifiability is never moot, but it’s possible to lead a sound and social life taking

the previous three assumptions to be axiomatic.

In domains with less certainty, such as human or physical behavior, modeling is an impor-

tant tool to help explain patterns. In our eagerness to make data say something, however,

it’s possible to overfit a model.

Consider the problem of finding exoplanets with Doppler radial velocity (a process I don’t

pretend to understand more than superficially: basically, bright stars make it hard to see

planets, so astronomers identify combinations of Doppler shifts that would only occur due

to the presence of a planet orbiting the star). It’s difficult to test the sensitivity of a model,

but with a mere 15 observations, it’s possible to fit the very sexy sinusoidal curve in

Figure 13-7 to the data (Ge et al. 2004)!

When we overfit a model, it loses predictive power. Also, if we’re willing to accept any

model that most optimally fits existing data, without a care for its complexity or sensitiv-

ity, we make several mistakes. First, we forget causality and do data a disservice; an over-

tuned model explains nothing.

Second, we forget that data (or data collection) may be limited, and that the world itself

can change. Take the problem of trying to predict the world’s climate 200 years from now.

There are a few key pieces of evidence at high resolution over a long course of time—

namely, global temperature data from the fossil record and ice cores. Climatologists can

also infer local temperature and precipitation from diaries and tree rings, but with very

different levels of precision: 18th-century storm glasses are not the same as 20th-century

weather balloons with GPS. And, who knows if the same sets of interactions will drive cli-

matic events in the 21st century as did in the 20th.

214 C H A P T E R T H I R T E E N

Similarly, Ford Motor Company in 1914 is not the same as Ford in 1975 nor as Ford today,

yet many financial models assume the dynamics of the market’s last cycle will also explain

its future performance (and models make very different assumptions about the relevant

time period to consider). As a result, risk analysis models may be only a little bit (accept-

ably) off on most days, but can break down entirely when the “unexpected” occurs (for

example, when the housing market collapses).

Good scientists are aware of the dangers of a bad model, but it’s not hard to be seduced by

a fit that’s too good to be true. Take, for example, this 2005 report from Moody’s (Dwyer)

discussing one unit’s experience with overfit models (which it proceeded to correct, but—

in hindsight—in a not nearly big enough way):

A certain amount of skepticism is appropriate when a new modeling methodology

yields a large increase in power. [It] will often be the result of fitting the data collection

mechanism rather than an actual underlying behavioral relationship. In addition, these

issues are clear afterward, but were not turned up in the ordinary pre-modeling data-

cleansing process that we had in place at the time…

At best, overfitting will introduce unneeded complexity into the model or discredit it

with users. At worst, it can lead to systematic error in the risk assessment of a portfolio.

Oops.

There are many compelling reasons to build models beyond prediction, including to

explore scenarios and illuminate assumptions; for an excellent enumeration, see Joshua

Epstein’s 2008 essay “Why Model?”

F I G U R E 1 3 - 7 . A model for extra-solar planet identification.

†
†
†

†

†
†††

†

††
†

†

†
†

Radial velocity for 51Peglo10–32: 8/14/2002

00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

14 Aug 15 Aug 16 Aug 17 Aug 18 Aug 19 Aug

Time (UT + 0.00000hr)

R
elative p

hase (rad
)

R
el

at
iv

e
ve

lo
ci

ty
 s

hi
ft

 (m
/s

)

100

50

0

–50

–100

–0.02

–0.01

0.00

0.01

0.02

W H A T D A T A D O E S N ’ T D O 215

6. Probability Isn’t Intuitive

This is another favorite flogging horse of the statistical establishment, and for good cause.

Statisticians tirelessly devise cute games to demonstrate that a seemingly common-sense

answer can fail to be probabilistically correct, and that conditional and joint probabilities

are not intuitive. They are especially delighted when mathematicians and medical doctors

are fooled by these games.

In a given U.S. city, about 1,000 out of 1 million (or 0.1% of) inhabitants are HIV-positive.

A new test to diagnose HIV has a 1% failure rate: one out of a hundred times, it will incor-

rectly diagnose an HIV-negative individual as having HIV, and 1% of the time it will incor-

rectly diagnose someone with HIV as HIV-negative.

Suppose an individual takes the test and is diagnosed as HIV-positive. What are the

chances that he has the virus?

Many people will answer that there’s a 99% chance he has the virus, because the test has

a 1% failure rate. In fact, because the proportion of the population that has the disease is

so small, any individual’s chance of having it, even if diagnosed, is low: only 9.9%. (Of the

999,000 HIV-negative residents, 9,990 will be told they have the virus, while 990 of the

HIV-positive residents will get a true positive. Given a positive diagnosis, the chances that

you are in fact HIV-positive are 990/9,990, or 9.9%.)

Doctors, at least apocryphally, fail in droves.

In many situations, priors don’t disappear. When using data to answer a question, we don’t

know what evidence to exclude and how to weight what we include. Daniel Kahneman—

an indefatigable namer-of-concepts—names this one the “base rate fallacy.”

7. Probabilities Aren’t Intuitive

Not only is probability theory difficult to grasp, individual probabilities are fleeting. In the

absence of a causal explanation to tie an event to a set of outcomes, individuals rely on

past observations to estimate probabilities. And observations are often collected in a biased

way (especially if they’re garnered through experience, but often also when collected via

experimentation), and are very difficult to document, reconcile, weight, preserve, and

query.

8. The Real World Doesn’t Create Random Variables

In the beginning, the earth was without form and void. Then Fisher said, “Let there be z-scores and

ANOVA” and there were z-scores. And Fisher saw that regression was good, and he separated the sig-

nificant from the nonsignificant.

The innovations of statistics seem so momentous that it can be difficult to keep in mind that

they’re not laws of nature. One can imagine an alternate universe in which the de facto

216 C H A P T E R T H I R T E E N

threshold for statistical significance had been set (arbitrarily, as it was in our universe) at

p=0.01 or p=0.06, rather than at the current p=0.05. Think of the drugs that would have

been approved or rejected, the misplaced correlations between environmental variables

and health effects, the piles of cash you’d be saving on auto insurance!

In our non-Fisherian world, there are no such things as independent random variables. In

fact, many things are highly connected. Good experimentation controls for interdepen-

dencies insofar as is possible, but dependencies can be hard to spot. As we’ve learned

recently, it can be a mistake to assume discrete events (a homeowner defaulting on his

mortgage, for example) are independent, and to build large edifices upon such assump-

tions (tradeable financial products sliced into tranches, for example) when they are not

necessarily so.

Prediction markets and group decision-making processes can work exceptionally well—in

some cases, better than the estimates of a set of experts. They’ve been shown to break

down, however, when information cascades and interdependencies enter the system

(Bikhchandani et al. 1998).

9. Data Doesn’t Stand Alone

In real-world decision-making, data comes in many forms. Rarely is information cleaned

and packaged in a well-labeled spreadsheet or matrix file; instead, we often need to make

conclusions based on subjective as well as quantitative information.

Take, for example, the decision of whether to lend money to someone online (for a profit,

as part of an established lending marketplace). An analysis that colleagues and I conducted

of loan funding and repayment using a data set of 350,000 loans from the peer-to-peer

platform Prosper.com reveals that any number of models (mixture models, neural nets,

decision trees, regression) can predict who will get a loan and who will repay it on time

with only about 75% accuracy. A huge amount of data—including over 100 personal

financial health indicators for each member of the network—can be fed into the algo-

rithms, but there remains uncertainty about which applicants will fare well and which will

fail to be funded.

Our models can be refined in part by attempting to quantify subjective features. When an

individual decides whether to lend money to a member of the network, the lender (unlike

a bank) takes into account a number of “softer” factors: the borrower’s statement of pur-

pose, the accompanying image, spelling, grammar, and other profile information. To

incorporate some of these features into our models, I used human workers (from Amazon’s

Mechanical Turk) to code images from Prosper.com members, first for content—whether

the image depicts a person, a family, a vehicle, etc.—and then for a “trustworthiness” score:

that is, for the answer to the question, “Would you lend money to this person?”

W H A T D A T A D O E S N ’ T D O 217

But the models still fell short: social factors play into loan dynamics in unexpected ways.

Contrary to our assumptions, lending decisions aren’t made independently. Rather,

there’s some evidence of herding behavior in bids: lenders follow other lenders, and bids-

per-unit-time accelerate as more bids accumulate on a loan.

Even with these and other social factors taken into account, many lenders make suboptimal

decisions. Prosper is, in theory, a market with near-perfect information: almost anyone

can access the site’s API and repeat our analysis. Yet lenders continually accept a low level

of return for very risky investments: a surprising number make very bad bets given statis-

tical expected payoffs. Even with good information (and modest proxies for subjective

data), decisions aren’t always made directly from data, and data, in turn, can only explain

human decisions in part.

10. Data Isn’t Free from the Eye of the Beholder

Finally, even in realms where solid causal explanation is possible, when data is collected

honestly and modeled carefully by a judicious student of Fisher and (if our pupil is so

inclined) Bayes, who accounts for variation and validates his model (and still remains

skeptical of its results), a couple of cognitive biases cloud our thinking. In the real world,

we operate pseudoprobabilistically at best.

Just as the statisticians tend to their tsk-tsk blogs, the behavioral economists have made a

field from their own chronicles of infamy. The narrative fallacy, confirmation bias, para-

dox of choice, asymmetry of risk-taking, base rate fallacy, and hyperbolic discounting

were mentioned earlier. Psychologists have indexed many others, ranging from anchoring

(overreliance on a single recent data point in making a decision) to the Lake Wobegon

effect (the phenomenon of more than half of individuals in a population believing they

are above average).

As these effects become better documented, we can develop tools and intuitions to help take

data at face value (part of my work is focused on developing tools for financial decision-

making). In some sense, the solution is simple: data doesn’t do much if you don’t under-

stand its limits.

Conclusion
It’s no news that we live in an age of abundant data. Bits are cheap and loose. Evolution-

ary processes have equipped us to note jarring changes in the environment—the prover-

bial tiger or tsunami—to recognize faces and create narratives to aid memory. But we lack

infrastructure to collect and sort massive and heterogeneous sets of data. What infrastruc-

ture we have must be carefully employed: we can begin to better use data by understand-

ing both probabilities and the limits of probability, and by remaining careful of the

cognitive biases that cloud interpretation.

Data in the eye of the beholder can be beautiful indeed.

218 C H A P T E R T H I R T E E N

References
Anscombe, F. J. “Graphs in Statistical Analysis.” The American Statistician, vol. 27, no. 1

(February 1973), pp. 17–21.

Bikhchandani, S. et al. (1998). “Learning from the Behavior of Others: Conformity, Fads, and

Informational Cascades,” Journal of Economic Perspectives, vol. 12, issue 3, pp. 151–170.

Dwyer, D. W. 2005. “Examples of overfitting encountered when building private firm default

prediction models” (www.moodyskmv.com/research/files/wp/Overfitting_Private_Firm_Models.pdf).

Epstein, Joshua M. (2008). “Why Model?”. Journal of Artificial Societies and Social Simulation

11(4)12.

Ge, J. et al., 2004, “All Sky Extrasolar Planet Searches with Multi-Object Dispersed Fixed-

delay Interferometer in Optical and near-IR.” Proc. SPIE, 5492, 711.

Goldstein, Daniel G. et al. (2008). “Choosing Outcomes Versus Choosing Products:

Consumer-Focused Retirement Investment Advice.” Journal of Consumer Research, 35 (Octo-

ber), 440–456.

Gould, S. J. “The Median is not the Message.” Discover Magazine, 1985.

Iyengar, S. S. and M. R. Lepper. “When choice is demotivating: can one desire too much of a

good thing?” Journal of Personality and Social Psychology, 2000, vol. 79, no. 6, 995–1006.

Jeng, M. “A selected history of expectation bias in physics.” American Journal of Physics,

2006.

Kahneman, Daniel and Amos Tversky (1979). “Prospect Theory: An Analysis of Decision

under Risk,” Econometrica, XLVII (1979), 263–291.

Krumme, C. “Telling tales: the effects of narrative creation on decision-making with data,”

working paper.

Lo, A. W. and D. V. Repin. “The Psychophysiology of Real-Time Financial Risk Processing”

Journal of Cognitive Neuroscience, April 1, 2002, vol. 14, no. 3, 323–339.

Lord, C. G. et al. (1979). “Biased assimilation and attitude polarization: The effects of prior

theories on subsequently considered evidence.” Journal of Personality and Social Psychology,

37, 2098–2109.

Shellenbarger, Sue. Wall Street Journal “Work and Family” column, March 22, 2008.

www.moodyskmv.com/research/files/wp/Overfitting_Private_Firm_Models.pdf

219

Chapter 14 C H A P T E R F O U R T E E N

Natural Language Corpus Data
Peter Norvig

MOST OF THIS BOOK DEALS WITH DATA THAT IS BEAUTIFUL IN THE SENSE OF BAUDELAIRE: “ALL WHICH IS

beautiful and noble is the result of reason and calculation.” This chapter’s data is beautiful

in Thoreau’s sense: “All men are really most attracted by the beauty of plain speech.” The

data we will examine is the plainest of speech: a trillion words of English, taken from pub-

licly available web pages. All the banality of the Web—the spelling and grammatical

errors, the LOL cats, the Rickrolling—but also the collected works of Twain, Dickens,

Austen, and millions of other authors.

The trillion-word data set was published by Thorsten Brants and Alex Franz of Google in

2006 and is available through the Linguistic Data Consortium (http://tinyurl.com/ngrams).

The data set summarizes the original texts by counting the number of appearances of each

word, and of each two-, three-, four-, and five-word sequence. For example, “the”

appears 23 billion times (2.2% of the trillion words), making it the most common word.

The word “rebating” appears 12,750 times (a millionth of a percent), as does “fnuny”

(apparently a misspelling of “funny”). In three-word sequences, “Find all posts” appears

13 million times (.001%), about as often as “each of the,” but well below the 100 mil-

lion of “All Rights Reserved” (.01%). Here’s an excerpt from the three-word sequences:

http://tinyurl.com/ngrams

220 C H A P T E R F O U R T E E N

outraged many African 63
outraged many Americans 203
outraged many Christians 56
outraged many Iraqis 58
outraged many Muslims 74
outraged many Pakistanis 124
outraged many Republicans 50
outraged many Turks 390
outraged many by 86
outraged many in 685
outraged many liberal 67
outraged many local 44
outraged many members 61
outraged many of 489
outraged many people 444
outraged many scientists 90

We see, for example, that Turks are the most outraged group (on the Web, at the time the

data was collected), and that Republicans and liberals are outraged occasionally, but Dem-

ocrats and conservatives don’t make the list.

Why would I say this data is beautiful, and not merely mundane? Each individual count is

mundane. But the aggregation of the counts—billions of counts—is beautiful, because it

says so much, not just about the English language, but about the world that speakers

inhabit. The data is beautiful because it represents much of what is worth saying.

Before seeing what we can do with the data, we need to talk the talk—learn a little bit of

jargon. A collection of text is called a corpus. We treat the corpus as a sequence of tokens—

words and punctuation. Each distinct token is called a type, so the text “Run, Lola Run”

has four tokens (the comma counts as one) but only three types. The set of all types is

called the vocabulary. The Google Corpus has a trillion tokens and 13 million types. English

has only about a million dictionary words, but the corpus includes types such as “www.

njstatelib.org”. “+170.002”, “1.5GHz/512MB/60GB”, and “Abrahamovich”. Most of the

types are rare, however; the 10 most common types cover almost 1/3 of the tokens, the

top 1,000 cover just over 2/3, and the top 100,000 cover 98%.

A 1-token sequence is a unigram, a 2-token sequence is a bigram, and an n-token sequence

is an n-gram. P stands for probability, as in P(the) = .022, which means that the probability

of the token “the” is .022, or 2.2%. If W is a sequence of tokens, then W3 is the third

token, and W1:3 is the sequence of the first through third tokens. P(Wi =the | Wi–1=of) is

the conditional probability of “the”, given that “of” is the previous token.

Some details of the Google Corpus: words appearing fewer than 200 times are considered

unknown and appear as the symbol <UNK>. N-grams that occur fewer than 40 times are dis-

carded. This policy lessens the effect of typos and helps keep the data set to a mere 24

gigabytes (compressed). Finally, each sentence in the corpora is taken to start with the

special symbol <S> and end with </S>.

We will now look at some tasks that can be accomplished using the data.

N A T U R A L L A N G U A G E C O R P U S D A T A 221

Word Segmentation
Consider the Chinese text . This is the translation of the phrase “float like a but-

terfly.” It consists of five characters, but there are no spaces between them, so a Chinese

reader must perform the task of word segmentation: deciding where the word boundaries

are. Readers of English don’t normally perform this task, because we have spaces between

words. However, some texts, such as URLs, don’t have spaces, and sometimes writers

make mistakes and leave a space out; how could a search engine or word processing pro-

gram correct such a mistake?

Consider the English text “choosespain.com.” This is a website hoping to convince you to

choose Spain as a travel destination, but if you segment the name wrong, you get the less

appealing name “chooses pain.” Human readers are able to make the right choice by

drawing upon years of experience; surely it would be an insurmountable task to encode

that experience into a computer algorithm. Yet we can take a shortcut that works surpris-

ingly well: look up each phrase in the bigram table. We see that “choose Spain” has a

count of 3,210, whereas “chooses pain” does not appear in the table at all (which means it

occurs fewer than 40 times in the trillion-word corpus). Thus “choose Spain” is at least 80

times more likely, and can be safely considered the right segmentation.

Suppose we were faced with the task of interpreting the phrase “insufficientnumbers.” If

we add together capitalized and lowercase versions of the words, the counts are:

insufficient numbers 20751
in sufficient numbers 32378

“In sufficient numbers” is 50% more frequent than “insufficient numbers” but that’s

hardly compelling evidence. We are left in a frustrating position: we can guess, but we

can’t be confident. In uncertain problems like this, we don’t have any way of calculating a

definitive correct answer, we don’t have a complete model of what makes one answer

right, and in fact human experts don’t have a complete model, either, and can disagree on

the answer. Still, there is an established methodology for solving uncertain problems:

1. Define a probabilistic model. We can’t define all the factors (semantic, syntactic,

lexical, and social) that make “choose Spain” a better candidate for a domain name,

but we can define a simplified model that gives approximate probabilities. For short

candidates like “choose Spain” we could just look up the n-gram in the corpus data

and use that as the probability. For longer candidates we will need some way of

composing an answer from smaller parts. For words we haven’t seen before, we’ll

have to estimate the probability of an unknown word. The point is that we define a

language model—a probability distribution over all the strings in the language—and

learn the parameters of the model from our corpus data, then use the model to define

the probability of each candidate.

2. Enumerate candidates. We may not be sure whether “insufficient numbers” or “in

sufficient numbers” is more likely to be the intended phrase, but we can agree that

they are both candidate segmentations, as is “in suffi cient numb ers,” but that “hello

222 C H A P T E R F O U R T E E N

world” is not a valid candidate. In this step we withhold judgment and just enumerate

possibilities—all the possibilities if we can, or else a carefully selected sample.

3. Choose the most probable candidate. Apply the language model to each

candidate to get its probability, and choose the one with the highest probability.

If you prefer mathematical equations, the methodology is:

best = argmaxc ∈ candidates P(c)

Or, if you prefer computer code (we’ll use Python), it would be:

best = max(c in candidates, key=P)

Let’s apply the methodology to segmentation. We want to define a function, segment,

which takes as input a string with no spaces and returns a list of words that is the best

segmentation:

>>> segment('choosespain')
['choose', 'spain']

Let’s start with step 1, the probabilistic language model. The probability of a sequence of

words is the product of the probabilities of each word, given the word’s context: all the

preceding words. For those who like equations:

P(W1:n) = Πk=1:nP(Wk | W1:k–1)

We don’t have the data to compute this exactly, so we can approximate the equation by

using a smaller context. Since we have data for sequences up to 5-grams, it would be

tempting to use the 5-grams, so that the probability of an n-word sequence would be the

product of each word given the four previous words (not all previous words).

There are three difficulties with the 5-gram model. First, the 5-gram data is about 30

gigabytes, so it can’t all fit in RAM. Second, many 5-gram counts will be 0, and we’d need

some strategy for backing off, using shorter sequences to estimate the 5-gram probabilities.

Third, the search space of candidates will be large because dependencies extend up to four

words away. All three of these difficulties can be managed, with some effort. But instead,

let’s first consider a much simpler language model that solves all three difficulties at once:

a unigram model, in which the probability of a sequence is just the product of the proba-

bility of each word by itself. In this model, the probability of each word is independent of

the other words:

P(W1:n) = Πk=1:nP(Wk)

To segment 'wheninrome', we consider candidates such as when in rome, and compute

P(when) × P(in) × P(rome). If the product is higher than any other candidate’s product, then

that’s the best answer.

An n-character string has 2n–1 different segmentations (there are n–1 positions between

characters, each of which can either be or not be a word boundary). Thus the string

N A T U R A L L A N G U A G E C O R P U S D A T A 223

'wheninthecourseofhumaneventsitbecomesnecessary' has 35 trillion segmentations. But I’m

sure you were able to find the right segmentation in just a few seconds; clearly, you

couldn’t have enumerated all the candidates. You probably scanned “w”, “wh”, and “whe”

and rejected them as improbable words, but accepted “when” as probable. Then you

moved on to the remainder and found its best segmentation. Once we make the simplify-

ing assumption that each word is independent of the others, it means that we don’t have

to consider all combinations of words.

That gives us a sketch of the segment function: consider every possible way to split the text

into a first word and a remaining text (we can arbitrarily limit the longest possible word

to, say, L=20 letters). For each possible split, find the best way to segment the remainder.

Out of all the possible candidates, the one with the highest product of P(first)× P(remaining) is

the best.

Here we show a table of choices for the first word, probability of the word, probability of

the best segmentation of the remaining words, and probability of the whole (which is the

product of the probabilities of the first and the remainder). We see that the segmentation

starting with “when” is 50,000 times better than the second-best candidate.

We can implement segment in a few lines of Python:

@memo
def segment(text):
 "Return a list of words that is the best segmentation of text."
 if not text: return []
 candidates = ([first]+segment(rem) for first,rem in splits(text))
 return max(candidates, key=Pwords)

def splits(text, L=20):
 "Return a list of all possible (first, rem) pairs, len(first)<=L."
 return [(text[:i+1], text[i+1:])
 for i in range(min(len(text), L))]

def Pwords(words):
 "The Naive Bayes probability of a sequence of words."
 return product(Pw(w) for w in words)

This is the entire program—with three minor omissions: product is a utility function that

multiplies together a list of numbers, memo is a decorator that caches the results of previous

calls to a function so that they don’t have to be recomputed, and Pw estimates the probabil-

ity of a word by consulting the unigram count data.

first P(first) P(remaining) P(first) × P(remaining)

w 2•10–4 2•10–33 6•10–37

wh 5•10–6 6•10–33 3•10–38

whe 3•10–7 3•10–32 7•10–39

when 6•10–4 7•10–29 4•10–32

wheni 1•10–16 3•10–30 3•10–46

whenin 1•10–17 8•10–27 8•10–44

224 C H A P T E R F O U R T E E N

Without memo, a call to segment for an n-character text makes 2n recursive calls to segment;

with memo it makes only n calls—memo makes this a fairly efficient dynamic programming

algorithm. Each of the n calls considers O(L) splits, and evaluates each split by multiplying

O(n) probabilities, so the whole algorithm is O(n2L).

As for Pw, we read in the unigram counts from a datafile. If a word appears in the corpus,

its estimated probability is Count(word)/N, where N is the corpus size. Actually, instead of

using the full 13-million-type unigram datafile, I created vocab_common, which (a) is case-

insensitive, so that the counts for “the”, “The”, and “THE” are added together under a sin-

gle entry for “the”; (b) only has entries for words made out of letters, not numbers or

punctuation (so “+170.002” is out, as is “can’t”); and (c) lists only the most common 1/3

of a million words.

The only tricky part of Pw is when a word has not been seen in the corpus. This happens

sometimes even with a trillion-word corpus, so it would be a mistake to return 0 for the

probability. But what should it be? The number of tokens in the corpus, N, is about a tril-

lion, and the least common word in vocab_common has a count of 12,711. So a previously

unseen word should have a probability of somewhere between 0 and 12,710/N. Not all

unseen words are equally unlikely: a random sequence of 20 letters is less likely to be a

word than a random sequence of 6 letters. We will define a class for probability distribu-

tions, Pdist, which loads a datafile of (key, count) pairs. By default, the probability of an

unknown word is 1/N, but each instance of a Pdist can supply a custom function to over-

ride the default. We want to avoid having too high a probability for very long words, so

we (rather arbitrarily) start at a probability of 10/N, and decrease by a factor of 10 for

every letter in the candidate word. We then define Pw as a Pdist:

class Pdist(dict):
 "A probability distribution estimated from counts in datafile."
 def _ _init_ _(self, data, N=None, missingfn=None):
 for key,count in data:
 self[key] = self.get(key, 0) + int(count)
 self.N = float(N or sum(self.itervalues()))
 self.missingfn = missingfn or (lambda k, N: 1./N)
 def _ _call_ _(self, key):
 if key in self: return self[key]/self.N
 else: return self.missingfn(key, self.N)

def datafile(name, sep='\t'):
 "Read key,value pairs from file."
 for line in file(name):
 yield line.split(sep)

def avoid_long_words(word, N):
 "Estimate the probability of an unknown word."
 return 10./(N * 10**len(word))

N = 1024908267229 ## Number of tokens in corpus

Pw = Pdist(datafile('vocab_common'), N, avoid_long_words))

N A T U R A L L A N G U A G E C O R P U S D A T A 225

Note that Pw[w] is the raw count for word w, while Pw(w) is the probability. All the programs

described in this article are available at http://norvig.com/ngrams.

So how well does this model do at segmentation? Here are some examples:

>>> segment('choosespain')
['choose', 'spain']
>>> segment('thisisatest')
['this', 'is', 'a', 'test']
>>> segment('wheninthecourseofhumaneventsitbecomesnecessary')
['when', 'in', 'the', 'course', 'of', 'human', 'events', 'it', 'becomes', 'necessary']
>>> segment('whorepresents')
['who', 'represents']
>>> segment('expertsexchange')
['experts', 'exchange']
>>> segment('speedofart')
['speed', 'of', 'art']
>>> segment('nowisthetimeforallgood')
['now', 'is', 'the', 'time', 'for', 'all', 'good']
>>> segment('itisatruthuniversallyacknowledged')
['it', 'is', 'a', 'truth', 'universally', 'acknowledged']
>>> segment('itwasabrightcolddayinaprilandtheclockswerestrikingthirteen')
['it', 'was', 'a', 'bright', 'cold', 'day', 'in', 'april', 'and', 'the', 'clocks',
'were', 'striking', 'thirteen']
>>> segment('itwasthebestoftimesitwastheworstoftimesitwastheageofwisdomitwastheage
offoolishness')
['it', 'was', 'the', 'best', 'of', 'times', 'it', 'was', 'the', 'worst', 'of', 'times',
'it', 'was', 'the', 'age', 'of', 'wisdom', 'it', 'was', 'the', 'age', 'of',
'foolishness']
>>> segment('asgregorsamsaawokeonemorningfromuneasydreamshefoundhimselftransformed
inhisbedintoagiganticinsect')
['as', 'gregor', 'samsa', 'awoke', 'one', 'morning', 'from', 'uneasy', 'dreams', 'he',
'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'gigantic',
'insect']
>>> segment('inaholeinthegroundtherelivedahobbitnotanastydirtywetholefilledwiththe
endsofwormsandanoozysmellnoryetadrybaresandyholewithnothinginittositdownonortoeat
itwasahobbitholeandthatmeanscomfort')
['in', 'a', 'hole', 'in', 'the', 'ground', 'there', 'lived', 'a', 'hobbit', 'not', 'a',
'nasty', 'dirty', 'wet', 'hole', 'filled', 'with', 'the', 'ends', 'of', 'worms', 'and',
'an', 'oozy', 'smell', 'nor', 'yet', 'a', 'dry', 'bare', 'sandy', 'hole', 'with',
'nothing', 'in', 'it', 'to', 'sitdown', 'on', 'or', 'to', 'eat', 'it', 'was', 'a',
'hobbit', 'hole', 'and', 'that', 'means', 'comfort']
>>> segment('faroutintheunchartedbackwatersoftheunfashionableendofthewesternspiral
armofthegalaxyliesasmallunregardedyellowsun')
['far', 'out', 'in', 'the', 'uncharted', 'backwaters', 'of', 'the', 'unfashionable',
'end', 'of', 'the', 'western', 'spiral', 'arm', 'of', 'the', 'galaxy', 'lies', 'a',
'small', 'un', 'regarded', 'yellow', 'sun']

The reader might be pleased to see the program correctly segmented such unusual words

as “Samsa” and “oozy”. You shouldn’t be surprised: “Samsa” appears 42,000 times and

“oozy” 13,000 times in the trillion-word corpus. Overall the results look good, but there

are two errors: 'un','regarded' should be one word, and 'sitdown' should be two. Still,

that’s a word precision rate of 157/159 = 98.7%; not too bad.

http://norvig.com/ngrams

226 C H A P T E R F O U R T E E N

The first error is in part because “unregarded” does not appear in our 1/3-million-word

vocabulary. (It is in the full 1/3-million-word vocabulary at position 1,005,493, with

count 7,557.) If we put it in the vocabulary, we see that the segmentation is correct:

>>> Pw['unregarded'] = 7557
>>> segment('faroutintheunchartedbackwatersoftheunfashionableendofthewesternspiral
armofthegalaxyliesasmallunregardedyellowsun')
['far', 'out', 'in', 'the', 'uncharted', 'backwaters', 'of', 'the', 'unfashionable',
'end', 'of', 'the', 'western', 'spiral', 'arm', 'of', 'the', 'galaxy', 'lies', 'a',
'small', 'unregarded', 'yellow', 'sun']

That doesn’t prove we’ve solved the problem: we would have to put back all the other

intervening words, not just the one we wanted, and we would have to then rerun all the

test cases to make sure that adding the other words did not mess up any other result.

The second error happens because, although “sit” and “down” are common words (with

probability .003% and .04%, respectively), the product of their two probabilities is just

slightly less than the probability of “sitdown” by itself. However, the probability of the

two-word sequence “sit down,” according to the bigram counts, is about 100 times

greater. We can try to fix this problem by modeling bigrams; that is, considering the prob-

ability of each word, given the previous word:

P(W1:n) = Πk=1:nP(Wk | Wk–1)

Of course the complete bigram table won’t fit into memory. If we keep only bigrams that

appear 100,000 or more times, that works out to a little over 250,000 entries, which does

fit. We can then estimate P(down | sit) as Count(sit down)/Count(sit). If a bigram does not

appear in the table, then we just fall back on the unigram value. We can define cPw, the

conditional probability of a word given the previous word, as:

def cPw(word, prev):
 "The conditional probability P(word | previous-word)."
 try:
 return P2w[prev + ' ' + word]/float(Pw[prev])
 except KeyError:
 return Pw(word)

P2w = Pdist(datafile('count2w'), N)

(Purists will note cPw is not a probability distribution, because the sum over all words for a

given previous word can be greater than 1. This approach has the technical name stupid

backoff, but it works well in practice, so we won’t worry about it.) We can now compare

“sitdown” to “sit down” with a preceding “to”:

>>> cPw('sit', 'to')*cPw('down', 'sit') / cPw('sitdown', 'to')
1698.0002330199263

We see that “sit down” is 1,698 times more likely than “sitdown”, because “sit down” is a

popular bigram, and because “to sit” is popular but “to sitdown” is not.

This looks promising; let’s implement a new version of segment using a bigram model.

While we’re at it, we’ll fix two other issues:

N A T U R A L L A N G U A G E C O R P U S D A T A 227

1. When segment added one new word to a sequence of n words segmented in the

remainder, it called Pwords to multiply together all n+1 probabilities. But segment had

already multiplied all the probabilities in the remainder. It would be more efficient to

remember the probability of the remainder and then just do one more multiplication.

2. There is a potential problem with arithmetic underflow. If we apply Pwords to a

sequence consisting of the word “blah” repeated 61 times, we get 5.2•10–321, but if

we add one more “blah,” we get 0.0. The smallest positive floating-point number that

can be represented is about 4.9•10–324; anything smaller than that rounds to 0.0. To

avoid underflow, the simplest solution is to add logarithms of numbers rather than

multiplying the numbers themselves.

We will define segment2, which differs from segment in three ways: first, it uses a condi-

tional bigram language model, cPw, rather than the unigram model Pw. Second, the func-

tion signature is different. Instead of being passed a single argument (the text), segment2 is

also passed the previous word. At the start of the sentence, the previous word is the spe-

cial beginning-of-sentence marker, <S>. The return value is not just a list of words, but

rather a pair of values: the probability of the segmentation, followed by the list of words.

We return the probability so that it can be stored (by memo) and need not be recomputed;

this fixes problem (1), the inefficiency. The function combine takes four inputs—the first

word and the remaining words, plus their probabilities—and combines them by append-

ing the first word to the remaining words, and by multiplying the probabilities—except

that in order to solve problem (2), we introduce the third difference: we add logarithms of

probabilities instead of multiplying the raw probabilities.

Here is the code for segment2:

from math import log10

@memo
def segment2(text, prev='<S>'):
 "Return (log P(words), words), where words is the best segmentation."
 if not text: return 0.0, []
 candidates = [combine(log10(cPw(first, prev)), first, segment2(rem, first))
 for first,rem in splits(text)]
 return max(candidates)

def combine(Pfirst, first, (Prem, rem)):
 "Combine first and rem results into one (probability, words) pair."
 return Pfirst+Prem, [first]+rem

segment2 makes O(nL) recursive calls, and each one considers O(L) splits, so the whole

algorithm is O(nL2). In effect this is the Viterbi algorithm, with memo implicitly creating the

Viterbi tables.

segment2 correctly segments the “sit down” example, and gets right all the examples that

the first version got right. Neither version gets the “unregarded” example right.

Could we improve on this performance? Probably. We could create a more accurate model

of unknown words. We could incorporate more data, and either keep more entries from

the unigram or bigram data, or perhaps add trigram data.

228 C H A P T E R F O U R T E E N

Secret Codes
Our second challenge is to decode a message written in a secret code. We’ll look at

substitution ciphers, in which each letter is replaced by another. The description of what

replaces what is called the key, which we can represent as a string of 26 letters; the first let-

ter replaces “a”, the second replaces “b”, and so on. Here is the function to encode a mes-

sage with a substitution cipher key (the Python library functions maketrans and translate

do most of the work):

def encode(msg, key):
 "Encode a message with a substitution cipher."
 return msg.translate(string.maketrans(ul(alphabet), ul(key)))

def ul(text): return text.upper() + text.lower()

alphabet = 'abcdefghijklmnopqrstuvwxyz'

Perhaps the simplest of all codes is the shift cipher, a substitution cipher in which each let-

ter in the message is replaced by the letter n letters later in the alphabet. If n = 1, then “a”

is replaced by “b” and “b” is replaced by “c”, up to “z”, which is replaced by “a”. Shift

ciphers are also called Caesar ciphers; they were state-of-the-art in 50 BC. The function

shift encodes with a shift cipher:

def shift(msg, n=13):
 "Encode a message with a shift (Caesar) cipher."
 return encode(msg, alphabet[n:]+alphabet[:n])

We use the function like this:

>>> shift('Listen, do you want to know a secret?')
'Yvfgra, qb lbh jnag gb xabj n frperg?'

>>> shift('HAL 9000 xyz', 1)
'IBM 9000 yza'

To decode a message without knowing the key, we follow the same methodology we did

with segmentations: define a model (we’ll stick with unigram word probabilities), enu-

merate candidates, and choose the most probable. There are only 26 candidate shifts to

consider, so we can try them all.

To implement this we define logPwords, which is like Pwords, but returns the log of the

probability, and accepts the input as either a long string of words or a list of words:

def logPwords(words):
 "The Naive Bayes probability of a string or sequence of words."
 if isinstance(words, str): words = allwords(words)
 return sum(log10(Pw(w)) for w in words)

def allwords(text):
 "Return a list of alphabetic words in text, lowercase."
 return re.findall('[a-z]+', text.lower())

Now we can decode by enumerating all candidates and picking the most probable:

N A T U R A L L A N G U A G E C O R P U S D A T A 229

def decode_shift(msg):
 "Find the best decoding of a message encoded with a shift cipher."
 candidates = [shift(msg, n) for n in range(len(alphabet))]
 return max(candidates, key=logPwords)

We can test to see that this works:

>>> decode_shift('Yvfgra, qb lbh jnag gb xabj n frperg?')
'Listen, do you want to know a secret?'

This is all too easy. To see why, look at the 26 candidates, with their log-probabilities:

Yvfgra, qb lbh jnag gb xabj n frperg? -84
Zwghsb, rc mci kobh hc ybck o gsqfsh? -83
Axhitc, sd ndj lpci id zcdl p htrgti? -83
Byijud, te oek mqdj je adem q iushuj? -77
Czjkve, uf pfl nrek kf befn r jvtivk? -85
Daklwf, vg qgm osfl lg cfgo s kwujwl? -91
Eblmxg, wh rhn ptgm mh dghp t lxvkxm? -84
Fcmnyh, xi sio quhn ni ehiq u mywlyn? -84
Gdnozi, yj tjp rvio oj fijr v nzxmzo? -86
Heopaj, zk ukq swjp pk gjks w oaynap? -93
Ifpqbk, al vlr txkq ql hklt x pbzobq? -84
Jgqrcl, bm wms uylr rm ilmu y qcapcr? -76
Khrsdm, cn xnt vzms sn jmnv z rdbqds? -92
Listen, do you want to know a secret? -25
Mjtufo, ep zpv xbou up lopx b tfdsfu? -89
Nkuvgp, fq aqw ycpv vq mpqy c ugetgv? -87
Olvwhq, gr brx zdqw wr nqrz d vhfuhw? -85
Pmwxir, hs csy aerx xs orsa e wigvix? -77
Qnxyjs, it dtz bfsy yt pstb f xjhwjy? -83
Royzkt, ju eua cgtz zu qtuc g ykixkz? -85
Spzalu, kv fvb dhua av ruvd h zljyla? -85
Tqabmv, lw gwc eivb bw svwe i amkzmb? -84
Urbcnw, mx hxd fjwc cx twxf j bnlanc? -92
Vscdox, ny iye gkxd dy uxyg k combod? -84
Wtdepy, oz jzf hlye ez vyzh l dpncpe? -91
Xuefqz, pa kag imzf fa wzai m eqodqf? -83

As you scan the list, exactly one line stands out as English-like, and Pwords agrees with our

intuition, giving that line a log-probability of –25 (that is, 10–25), which is 1050 times more

probable than any other candidate.

The code maker can make the code breaker’s job harder by eliminating punctuation,

spaces between words, and uppercase distinctions. That way the code breaker doesn’t get

clues from short words like “I,” “a,” and “the,” nor from guessing that the character after

an apostrophe should be “s” or “t”. Here’s an encryption scheme, shift2, that removes

nonletters, converts everything to lowercase, and then applies a shift cipher:

def shift2(msg, n=13):
 "Encode with a shift (Caesar) cipher, yielding only letters [a-z]."
 return shift(just_letters(msg), n)

def just_letters(text):
 "Lowercase text and remove all characters except [a-z]."
 return re.sub('[^a-z]', '', text.lower())

230 C H A P T E R F O U R T E E N

And here’s a way to break this code by enumerating each candidate, segmenting each one,

and choosing the one with the highest probability:

def decode_shift2(msg):
 "Decode a message encoded with a shift cipher, with no spaces."
 candidates = [segment2(shift(msg, n)) for n in range(len(alphabet))]
 p, words = max(candidates)
 return ' '.join(words)

Let’s see how well it works:

>>> shift2('Listen, do you want to know a secret?')
'yvfgraqblbhjnaggbxabjnfrperg'

>>> decode_shift2('yvfgraqblbhjnaggbxabjnfrperg')
'listen do you want to know a secret'

>>> decode_shift2(shift2('Rosebud'))
'rosebud'

>>> decode_shift2(shift2("Is it safe?"))
'is it safe'

>>> decode_shift2(shift2("What's the frequency, Kenneth?"))
'whats the frequency kenneth'

>>> msg = 'General Kenobi: Years ago, you served my father in the Clone
Wars; now he begs you to help him in his struggle against the Empire.'

>>> decode_shift2(shift2(msg))
'general kenobi years ago you served my father in the clone wars now he
begs you to help him in his struggle against the empire'

Still way too easy. Let’s move on to a general substitution cipher, in which any letter can

be substituted for any other. Now we can no longer enumerate the possibilities, because

there are 26! keys (about 4 × 1026), rather than just 26. The Code Book by Simon Singh

(Anchor) offers five strategies (and we’ll mention a sixth) for breaking ciphers:

1. Letter unigram frequencies. Match common letters in the message to common letters

in English (like “e”) and uncommon to uncommon (like “z”).

2. Double letter analysis. A double in the coded message is still double in the decoded

message. Consider the least and most common double letters.

3. Look for common words like “the,” “and,” and “of.” One-letter words are most often

“a” or “I.”

4. If possible, get a frequency table made up of the type of messages you are dealing

with. Military messages use military jargon, etc.

5. Guess a word or phrase. For example, if you can guess that the message will contain

“your faithful servant,” try it.

6. Use word patterns. For example, the coded word “abbccddedf” is very likely

“bookkeeper,” because there are no other words in the corpus with that pattern.

N A T U R A L L A N G U A G E C O R P U S D A T A 231

For messages that do not contain spaces between words, strategies 3 and 6 do not apply.

Strategies 1 and 2 contain only 26 probabilities each, and seem targeted for a human ana-

lyst with limited memory and computing power, not for a computer program. Strategies 4

and 5 are for special-purpose, not general-purpose, decoders. It looks like we’re on our

own in coming up with a strategy. But we know the methodology.

I. Define a probabilistic model: We could evaluate candidates the same way we did for

shift ciphers: segment the text and calculate the probability of the words. But considering

step II of the methodology, our first few candidates (or few thousand) will likely be very

poor ones. At the start of our exploration, we won’t have anything resembling words, so it

won’t do much good to try to segment. However, we may (just by accident) have decoded

a few letters in a row that make sense. So let’s use letter n-grams rather than words for our

language model. Should we look at letter bigrams? 3-grams? 5-grams? I chose 3-grams

because they are the shortest that can represent common short words (strategy 3). I cre-

ated the datafile count_3l by counting the letter 3-grams (with spaces and punctuation

removed) within the word bigram datafiles (I couldn’t just look at the vocabulary file,

because I need to consider letter trigrams that cross word boundaries). All of the 263 =

17,576 trigrams appear. Here are the top and bottom 10:

the 2.763% fzq 0.0000004%
ing 1.471% jvq 0.0000004%
and 1.462% jnq 0.0000004%
ion 1.343% zqh 0.0000004%
tio 1.101% jqx 0.0000003%
ent 1.074% jwq 0.0000003%
for 0.884% jqy 0.0000003%
ati 0.852% zqy 0.0000003%
ter 0.728% jzq 0.0000002%
ate 0.672% zgq 0.0000002%

The letter trigram probability is computed like this:

def logP3letters(text):
 "The log-probability of text using a letter 3-gram model."
 return sum(log10(P3l(g)) for g in ngrams(text, 3))

P3l = Pdist(datafile('count_3l'))
P2l = Pdist(datafile('count_2l')) ## We'll need it later

II. Enumerate candidates: We can’t consider all 4 × 1026 possible keys, and there does

not appear to be a way to systematically eliminate nonoptimal candidates, as there was in

segmentation. That suggests a local search strategy, such as hill climbing. Suppose you

wanted to reach maximum elevation, but had no map. With the hill-climbing strategy,

you would start at a random location, x, and take a step to a neighboring location. If that

location is higher, continue to hill-climb from there. If not, consider another neighbor of x.

Of course, if you start at a random location on Earth and start walking uphill, you proba-

bly won’t end up on top of Mt. Everest. More likely you’ll end up on top of a small local

hill, or get stuck wandering around a flat plain. Therefore we add random restarts to our

hill-climbing algorithm: after we’ve taken a certain number of steps, we start all over

again in a new random location.

232 C H A P T E R F O U R T E E N

Here is the general hillclimb algorithm. It takes a starting location, x, a function f that we

are trying to optimize, a function neighbors that generates the neighbors of a location, and

a maximum number of steps to take. (If the variable debugging is true, it prints the best x

and its score.)

def hillclimb(x, f, neighbors, steps=10000):
 "Search for an x that miximizes f(x), considering neighbors(x)."
 fx = f(x)
 neighborhood = iter(neighbors(x))
 for i in range(steps):
 x2 = neighborhood.next()
 fx2 = f(x2)
 if fx2 >= fx:
 x, fx = x2, fx2
 neighborhood = iter(neighbors(x))
 if debugging: print 'hillclimb:', x, int(fx)
 return x

debugging = False

To use hillclimb for decoding, we need to specify the parameters. The locations we will be

searching through will be plain-text (decoded) messages. We will attempt to maximize

their letter trigram frequency, so f will be logP3letters. We’ll start with x being the mes-

sage decrypted with a random key. We’ll do random restarts, but when we gather the can-

didates from each restart, we will choose the one best according to segment2, rather than by

logP3letters:

def decode_subst(msg, steps=4000, restarts=20):
 "Decode a substitution cipher with random restart hillclimbing."
 msg = cat(allwords(msg))
 candidates = [hillclimb(encode(msg, key=cat(shuffled(alphabet))),
 logP3letters, neighboring_msgs, steps)
 for _ in range(restarts)]
 p, words = max(segment2(c) for c in candidates)
 return ' '.join(words)

def shuffled(seq):
 "Return a randomly shuffled copy of the input sequence."
 seq = list(seq)
 random.shuffle(seq)
 return seq

cat = ''.join

Now we need to define neighboring_msgs, which generates decryptions of the message to

try next. We first try to repair improbable letter bigrams. For example, the least frequent

bigram, “jq”, has probability 0.0001%, which is 50,000 times less than the most probable

bigrams, “in” and “th”. So if we see a “jq” in msg, we try swapping the “j” with each of the

other letters, and also try swapping the “q”. If a swap yields a more frequent bigram, then

we generate the message that results from making the swap. After exhausting repairs of

the 20 most improbable bigrams, we consider random swaps:

N A T U R A L L A N G U A G E C O R P U S D A T A 233

def neighboring_msgs(msg):
 "Generate nearby keys, hopefully better ones."
 def swap(a,b): return msg.translate(string.maketrans(a+b, b+a))
 for bigram in heapq.nsmallest(20, set(ngrams(msg, 2)), P2l):
 b1,b2 = bigram
 for c in alphabet:
 if b1==b2:
 if P2l(c+c) > P2l(bigram): yield swap(c,b1)
 else:
 if P2l(c+b2) > P2l(bigram): yield swap(c,b1)
 if P2l(b1+c) > P2l(bigram): yield swap(c,b2)
 while True:
 yield swap(random.choice(alphabet), random.choice(alphabet))

Let’s see how well this performs. We’ll try it on some ciphers from Robert Raynard’s book

Secret Code Breaker (Smith and Daniel; see http://secretcodebreaker.com). First a warm-up

message:

>>> msg = 'DSDRO XFIJV DIYSB ANQAL TAIMX VBDMB GASSA QRTRT CGGXJ MMTQC IPJSB AQPDR
SDIMS DUAMB CQCMS AQDRS DMRJN SBAGC IYTCY ASBCS MQXKS CICGX RSRCQ ACOGA SJPAS
AQHDI ASBAK GCDIS AWSJN CMDKB AQHAR RCYAE'

>>> decode_subst(msg)
'it is by knowing the frequency which letters usually occur and other distinctive
characteristics of the language that crypt analysts are able to determine the
plain text of a cipher message j'

This is correct except that “crypt analysts” should be one word. (It isn’t in Pw, but it is in

the 13-million-word vocabulary.) Note the last character (“E” in the cipher text) was

added to make the blocks of five letters come out even.

Now an actual message from Baron August Schluga, a German spy in World War I:

>>> msg = 'NKDIF SERLJ MIBFK FKDLV NQIBR HLCJU KFTFL KSTEN YQNDQ NTTEB TTENM QLJFS
NOSUM MLQTL CTENC QNKRE BTTBR HKLQT ELCBQ QBSFS KLTML SSFAI NLKBR RLUKT LCJUK
FTFLK FKSUC CFRFN KRYXB'

>>> decode_subst(msg)
'english complaining over lack of munitions they regret that the promised support of
the french attack north of arras is not possible on account of munition insufficiency
wa'

Here’s a 1992 message from the KGB to former CIA officer Aldrich Ames, who was con-

victed of spying in 1994:

>>> msg = 'CNLGV QVELH WTTAI LEHOT WEQVP CEBTQ FJNPP EDMFM LFCYF SQFSP NDHQF OEUTN
PPTPP CTDQN IFSQD TWHTN HHLFJ OLFSD HQFED HEGNQ TWVNQ HTNHH LFJWE BBITS PTHDT
XQQFO EUTYF SLFJE DEFDN IFSQG NLNGN PCTTQ EDOED FGQFI TLXNI'

>>> decode_subst(msg)
'march third week bridge with smile to pass info from you to us and to give assessment
about new dead drop ground to indicate what dead drop will be used next to give your
opinion about caracas meeting in october xab'

http://secretcodebreaker.com

234 C H A P T E R F O U R T E E N

This 1943 message from German U-Boat command was intercepted and decoded, saving a

convoy of Allied ships:

msg = 'WLJIU JYBRK PWFPF IJQSK PWRSS WEPTM MJRBS BJIRA BASPP IHBGP RWMWQ SOPSV PPIMJ
BISUF WIFOT HWBIS WBIQW FBJRB GPILP PXLPM SAJQQ PMJQS RJASW LSBLW GBHMJ
QSWIL PXWOL'

>>> decode_subst(msg)
'a cony ov is headed northeast take up positions fifteen miles apart between point yd
and bu maintain radio silence except for reports of tactical importance x abc'

This answer confuses the “y” and “v.” A human analyst would realize “cony ov” should be

“convoy” and that therefore “point yd” should be “point vd.” Our program never consid-

ered that possibility, because the letter trigram probability of the correct text is less than

the one shown here. We could perhaps fix the problem by inventing a better scoring func-

tion that does not get trapped in a local maximum. Or we could add a second level of hill-

climbing search: take the candidates generated by the first search and do a brief search

with segment2 as the scoring function. We’ll leave that exercise to the reader.

Spelling Correction
Our final task is spelling correction: given a typed word, w, determine what word c was

most likely intended. For example, if w is “acomodation”, c should be “accommodation”.

(If w is “the”, then c too should be “the”.)

Following the standard methodology, we want to choose the c that maximizes P(c | w). But

defining this probability is not straightforward. Consider w = “thew”. One candidate c is

“the”—it’s the most common word, and we can imagine the typist’s finger slipping off the

“e” key and hitting the “w”. Another candidate is “thaw”—a fairly common word

(although 30,000 times less frequent than “the”), and it is common to substitute one

vowel for another. Other candidates include “thew” itself (an obscure term for muscle or

sinew), “threw”, and “Thwe”, a family name. Which should we choose? It seems that we

are conflating two factors: how probable is c on its own, and how likely is it that w could

be a typo for c, or a mispronunciation, or some other kind of misspelling. One might think

we will have to combine these factors in some ad hoc fashion, but it turns out that there is

a mathematical formula, Bayes’s theorem, that tells us precisely how to combine them to

find the best candidate:

argmaxc P(c | w) = argmaxc P(w | c) P(c)

Here P(c), the probability that c is the intended word, is called the language model, and

P(w | c), the probability that an author would type w when c is intended, is called the error

model or noisy channel model. (The idea is that the ideal author intended to type c, but some

noise or static on the line altered c to w.) Unfortunately, we don’t have an easy way to

estimate this model from the corpus data we have—the corpus says nothing about what

words are misspellings of others.

N A T U R A L L A N G U A G E C O R P U S D A T A 235

We can solve this problem with more data: a list of misspellings. Roger Mitton has a list of

about 40,000 c,w pairs at http://www.dcs.bbk.ac.uk/~ROGER/corpora.html. But we can’t hope

to just look up P(w=thew | c=thaw) from this data; with only 40,000 examples, chances

are slim that we will have seen this exact pair before. When data is sparse, we need to

generalize. We can do that by ignoring the letters that are the same, the “th” and “w”,

leaving us with P(w=e | c=a), the probability that an “e” was typed when the correct letter

was “a”. This is one of the most common errors in the misspelling data, due to confusions

like “consistent/consistant” and “inseparable/inseperable.”

In the following table we consider five candidates for c when w=thew. One is thew itself,

and the other four represent the four types of single edits that we will consider: (1) We

can delete the letter “w” in “thew”, yielding “the”. (2) We can insert an “r” to get “threw”.

For both these edits, we condition on the previous letter. (3) We can replace “e” with “a”

as mentioned earlier. (4) We can transpose two adjacent letters, swapping “ew” with

“we”. We say that these single edits are at edit distance 1; a candidate that requires two sin-

gle edits is at edit distance 2. The table shows the words w and c, the edit w | c, the proba-

bility P(w | c), the probability P(c), and the product of the probabilities (scaled for

readability).

We see from the table that “the” is the most likely correction. P(c) can be computed with

Pw. For P(w | c) we need to create a new function, Pedit, which gives the probability of an

edit, estimated from the misspelling corpus. For example, Pedit('ew|e') is 0.000007. More

complicated edits are defined as a concatenation of single edits. For example, to get from

“hallow” to “hello” we concatenate a|e with ow|o, so the whole edit is called a|e+ow|o (or

ow|o+a|e, which in this case—but not always—is the same thing). The probability of a com-

plex edit is taken to be the product of its components.

A problem: what the probability of the empty edit, Pedit('')? That is, given that the

intended word is c, how likely is it that the author would actually type c, rather than one

of the possible edits that yields an error? That depends on the skill of the typist and on

whether any proofreading has been done. Rather arbitrarily, I assumed that a spelling

error occurs once every 20 words. Note that if I had assumed errors occur only once in 50

words, then P(w | c) for w="thew” would be 0.98, not 0.95, and “thew” would become the

most probable answer.

Finally, we’re ready to show the code. There are two top-level functions, correct, which

returns the best correction for a single word, and corrections, which applies correct to

w c w | c P(w | c) P(c) 109 P(w | c) P(c)

thew the ew | e 0.000007 0.02 144.

thew thew 0.95 0.00000009 90.

thew thaw e | a 0.001 0.0000007 0.7

thew threw h | hr 0.000008 0.000004 0.03

thew thwe ew | we 0.000003 0.00000004 0.0001

http://www.dcs.bbk.ac.uk/~ROGER/corpora.html

236 C H A P T E R F O U R T E E N

every word in a text, leaving the surrounding characters intact. The candidates are all the

possible edits, and the best is the one with the highest P(w | c) P(c) score:

def corrections(text):
 "Spell-correct all words in text."
 return re.sub('[a-zA-Z]+', lambda m: correct(m.group(0)), text)

def correct(w):
 "Return the word that is the most likely spell correction of w."
 candidates = edits(w).items()
 c, edit = max(candidates, key=lambda (c,e): Pedit(e) * Pw(c))
 return c

P(w | c) is computed by Pedit:

def Pedit(edit):
 "The probability of an edit; can be '' or 'a|b' or 'a|b+c|d'."
 if edit == '': return (1. - p_spell_error)
 return p_spell_error*product(P1edit(e) for e in edit.split('+'))

p_spell_error = 1./20.

P1edit = Pdist(datafile('count1edit')) ## Probabilities of single edits

The candidates are generated by edits, which is passed a word, and returns a dict of {word:

edit} pairs indicating the possible corrections. In general there will be several edits that

arrive at a correction. (For example, we can get from “tel” to “tell” by inserting an “l” after

the “e” or after the “l”.) We choose the edit with the highest probability. edits is the most

complex function we’ve seen so far. In part this is inherent; it is complicated to generate

four kinds of edits. But in part it is because we took some efforts to make edits efficient. (A

slower but easier-to-read version is at http://norvig.com/spell-correct.html.) If we considered

all edits, a word like “acommodations” would yield 233,166 candidates. But only 11 of

these are in the vocabulary. So edits works by precomputing the set of all prefixes of all

the words in the vocabulary. It then calls editsR recursively, splitting the word into a head

and a tail (hd and tl in the code) and assuring that the head is always in the list of prefixes.

The results are collected by adding to the dict results:

def edits(word, d=2):
 "Return a dict of {correct: edit} pairs within d edits of word."
 results = {}
 def editsR(hd, tl, d, edits):
 def ed(L,R): return edits+[R+'|'+L]
 C = hd+tl
 if C in Pw:
 e = '+'.join(edits)
 if C not in results: results[C] = e
 else: results[C] = max(results[C], e, key=Pedit)
 if d <= 0: return
 extensions = [hd+c for c in alphabet if hd+c in PREFIXES]
 p = (hd[-1] if hd else '<') ## previous character
 ## Insertion
 for h in extensions:
 editsR(h, tl, d-1, ed(p+h[-1], p))

N A T U R A L L A N G U A G E C O R P U S D A T A 237

 if not tl: return
 ## Deletion
 editsR(hd, tl[1:], d-1, ed(p, p+tl[0]))
 for h in extensions:
 if h[-1] == tl[0]: ## Match
 editsR(h, tl[1:], d, edits)
 else: ## Replacement
 editsR(h, tl[1:], d-1, ed(h[-1], tl[0]))
 ## Transpose
 if len(tl)>=2 and tl[0]!=tl[1] and hd+tl[1] in PREFIXES:
 editsR(hd+tl[1], tl[0]+tl[2:], d-1,
 ed(tl[1]+tl[0], tl[0:2]))
 ## Body of edits:
 editsR('', word, d, [])
 return results

PREFIXES = set(w[:i] for w in Pw for i in range(len(w) + 1))

Here’s an example of edits:

>>> edits('adiabatic', 2)
{'adiabatic': '', 'diabetic': '<a|<+a|e', 'diabatic': '<a|<'}

And here is the spell corrector at work:

>>> correct('vokabulary')
'vocabulary'

>>> correct('embracable')
'embraceable'

>>> corrections('thiss is a teyst of acommodations for korrections
of mispellings of particuler wurds.')
'this is a test of acommodations for corrections of mispellings
of particular words.'

Thirteen of the 15 words were handled correctly, but not “acommodations” and “mispell-

ings”. Why not? The unfortunate answer is that the Internet is full of lousy spelling. The

incorrect “mispellings” appears 18,543 times in the corpus. Yes, the correct word, “mis-

spellings”, appears half a million times, but that was not enough to overcome the bias for

no edit over a single edit. I suspect that most of the 96,759 occurrences of “thew” are also

spelling errors.

There are many ways we could improve this spelling program. First, we could correct

words in the context of the surrounding words, so that “they’re” would be correct when it

stands alone, but would be corrected to “their” when it appears in “in they’re words.” A

word bigram or trigram model would do the trick.

We really should clean up the lousy spelling in the corpus. Look at these misspellings:

misspellings 432354
mispellings 18543
misspelings 10148
mispelings 3937

238 C H A P T E R F O U R T E E N

The corpus uses the wrong word 7% of the time. I can think of three ways to fix this. First,

we could acquire a list of dictionary words and only make a correction to a word in the

dictionary. But a dictionary does not list all the newly coined words and proper names. (A

compromise might be to force lowercase words into the dictionary vocabulary, but allow

capitalized words that are not in the dictionary.) Second, we could acquire a corpus that

has been carefully proofread, perhaps one restricted to books and periodicals from high-

quality publishers. Third, we could spell-correct the corpus we have. It may seem like

circular reasoning to require spell-correction of the corpus before we can use it for spell-

correction, but it can be done. For this application we would start by grouping together words

that are a small edit distance from each other. For each pair of close words, we would then

check to see if one is much more common than the other. If it is, we would then check the

bigram (or trigram) counts to see if the two words had similar distributions of neighboring

words. For example, here are four bigram counts for “mispellings” and “misspellings”:

mispellings allowed 99 misspellings allowed 2410
mispellings as 50 misspellings as 749
mispellings for 122 misspellings for 11600
mispellings of 7360 misspellings of 16943

The two words share many bigram neighbors, always with “misspellings” being more

common, so that is good evidence that “mispellings” is a misspelling. Preliminary tests

show that this approach works well—but there is a problem: it would require hundreds of

CPU hours of computation. It is appropriate for a cluster of machines, not a single computer.

How does the data-driven approach compare to a more traditional software development

process wherein the programmer codes explicit rules? To address that, we’ll peek at the

spelling correction code from the ht://Dig project, an excellent open source intranet search

engine. Given a word, ht://Dig’s metaphone routine produces a key representing the sound of

the word. For example, both “tough” and “tuff” map to the key “TF”, and thus would be

candidates for misspellings of each other. Here is part of the metaphone code for the letter “G”:

 case 'G':
 /*
 * F if in -GH and not B--GH, D--GH,
 * -H--GH, -H---GH else dropped if
 * -GNED, -GN, -DGE-, -DGI-, -DGY-
 * else J if in -GE-, -GI-, -GY- and
 * not GG else K
 */
 if ((*(n + 1) != 'G' || vowel(*(n + 2))) &&
 (*(n + 1) != 'N' || (*(n + 1) &&
 (*(n + 2) != 'E' ||
 *(n + 3) != 'D'))) &&
 (*(n - 1) != 'D' || !frontv(*(n + 1))))
 if (frontv(*(n + 1)) && *(n + 2) != 'G')
 key << 'J';
 else
 key << 'K';
 else if (*(n + 1) == 'H' && !noghf(*(n - 3)) &&
 *(n - 4) != 'H')
 key << 'F';
 break;

N A T U R A L L A N G U A G E C O R P U S D A T A 239

This code correctly maps “GH” to “F” in “TOUGH” and not in “BOUGH”. But have the

rules correctly captured all the cases? What about “OUGHT”? Or “COUGH” versus “HIC-

COUGH”? We can write test cases to verify each branch of the code, but even then we

won’t know what words were not covered. What happens when a new word like “iPhone”

is introduced? Clearly, the handwritten rules are difficult to develop and maintain. The big

advantage of the data-driven method is that so much knowledge is encoded in the data,

and new knowledge can be added just by collecting more data. But another advantage is

that, while the data can be massive, the code is succinct—about 50 lines for correct, com-

pared to over 1,500 for ht://Dig’s spelling code. As the great ex-programmer Bill Gates

once said, “Measuring programming progress by lines of code is like measuring aircraft

building progress by weight.” Gates knew that lines of code are more a liability than an

asset. The probabilistic data-driven methodology is the ultimate in agile programming.

Another issue is portability. If we wanted a Latvian spelling-corrector, the English

metaphone rules would be of little use. To port the data-driven correct algorithm to another

language, all we need is a large corpus of Latvian; the code remains unchanged.

Other Tasks
Here are some more tasks that have been handled with probabilistic language models.

Language Identification

There are web protocols for declaring what human language a page is written in. In fact

there are at least two protocols, one in HTML and one in HTTP, but sometimes the proto-

cols disagree, and sometimes they both lie, so search engines usually classify pages based

on the actual content, after collecting some samples for each known language. Your task is

to write such a classifier. State of the art is over 99% accuracy.

Spam Detection and Other Classification Tasks

It is estimated that 100 billion spam email messages are sent every day. Given two corpora

of spam and nonspam messages, your task is to classify incoming messages. The best spam

classifiers have models for word n-grams (a message with “10,000,000.00 will be released”

and “our country Nigeria” is probably spam) and character n-grams (“v1agra” is probably

spam), among other features. State of the art on this task is also over 99%, which keeps

the spam blockers slightly ahead of the spammers. Once you can classify documents as

spam/nonspam, it is a short step to do other types of classification, such as urgent/nonurgent

email messages, or politics/business/sports/etc. for news articles, or favorable/neutral/

unfavorable for product reviews.

Author Identification (Stylometry)

Language models have been used to try to identify the disputed authors of the Federalist

Papers, Shakespeare’s poems, and Biblical verses. Similar techniques are used in tracking

terrorist groups and in criminal law, to identify and link perpetrators. This field is less

mature; we don’t yet know for sure what the best practices are, nor what accuracy rate to

240 C H A P T E R F O U R T E E N

expect, although the winner of a 2004 competition had 71% accuracy. The best perform-

ers in the competition were linguistically simple but statistically sophisticated.

Document Unshredding and DNA Sequencing

In Vernor Vinge’s science fiction novel Rainbows End (Tor Books), the Librareome project

digitizes an entire library by tossing the books into a tree shredder, photographing the

pieces, and using computer algorithms to reassemble the images. In real life, the German

government’s E-Puzzler project is reconstructing 45 million pages of documents shredded

by the former East German secret police, the Stasi. Both these projects rely on sophisti-

cated computer vision techniques. But once the images have been converted to characters,

language models and hill-climbing search can be used to reassemble the pieces. Similar

techniques can be used to read the language of life: the Human Genome Project used a

technique called shotgun sequencing to reassemble shreds of DNA. So-called “next gener-

ation sequencing” shifts even more of the burden away from the wet lab to large-scale

parallel reassembly algorithms.

Machine Translation

The Google n-gram corpus was created by researchers in the machine translation group.

Translating from a foreign language (f) into English (e) is similar to correcting misspelled

words. The best English translation is modeled as:

best = argmaxe P(e | f) = argmaxe P(f | e) P(e)

where P(e) is the language model for English, which is estimated by the word n-gram data,

and P(f | e) is the translation model, which is learned from a bilingual corpus: a corpus

where pairs of documents are marked as translations of each other. Although the top sys-

tems make use of many linguistic features, including parts of speech and syntactic parses

of the sentences, it appears that the majority of the knowledge necessary for translation

resides in the n-gram data.

Discussion and Conclusion
We have shown the power of a software development methodology that uses large

amounts of data to solve ill-posed problems in uncertain environments. In this chapter it

was language data, but many of the same lessons apply to other data.

In the examples we have explored, the programs are simple and succinct because the

probabilistic models are simple. These simple models ignore so much of what humans

know—clearly, to segment “choosespain.com”, we draw on much specific knowledge of

how the travel business works and other factors, but the surprising result is that a program

does not have to explicitly represent all that knowledge; it gets much of the knowledge

implicitly from the n-grams, which reflect what other humans have chosen to talk about.

In the past, probabilistic models were more complex because they relied on less data.

N A T U R A L L A N G U A G E C O R P U S D A T A 241

There was an emphasis on statistically sophisticated forms of smoothing when data is miss-

ing. Now that very large corpora are available, we use approaches like stupid backoff and

no longer worry as much about the smoothing model.

Most of the complexity in the programs we studied in this chapter was due to the search

strategy. We saw three classes of search strategy:

Exhaustive

For shift ciphers, there are only 26 candidates; we can test them all.

Guaranteed

For segmentation, there are 2n candidates, but most can be proved nonoptimal (given

the independence assumption) without examining them.

Heuristic

For full substitution ciphers, we can’t guarantee we’ve found the best candidate, but

we can search a representative subset that gives us a good chance of finding the max-

ima. For many problems, the majority of the work will be in picking the right function

to maximize, understanding the topology of the search space, and discovering a good

order to enumerate the neighbors.

If we are to base our models on large amounts of data, we’ll need data that is readily avail-

able “in the wild.” N-gram counts have this property: we can easily harvest a trillion words

of naturally occurring text from the Web. On the other hand, labeled spelling corrections

do not occur naturally, and thus we found only 40,000 of them. It is not a coincidence

that the two most successful applications of natural language—machine translation and

speech recognition—enjoy large corpora of examples available in the wild. In contrast, the

task of syntactic parsing of sentences remains largely unrealized, in part because there is

no large corpus of naturally occurring parsed sentences.

It should be mentioned that our probabilistic data-driven methodology—maximize the

probability over all candidates—is a special case of the rational data-driven methodology—

maximize expected utility over all candidates. The expected utility of an action is its average

value to the user over all possible outcomes. For example, a rational spelling correction

program should know that there are some taboo naughty words, and that suggesting them

when they were not intended causes embarrassment for the user, a negative effect that is

much worse than just spelling a word wrong. The rational program takes into account

both the probability that a word is correct or wrong, and the positive or negative value of

suggesting each word.

Uncertain problems require good discipline in validation and testing. To evaluate a solu-

tion to an uncertain problem, one should divide the data into three sets: (1) A training set

used to build the probabilistic model. (2) A validation set that the developer uses to evalu-

ate several different approaches, seeing which ones score better, and getting ideas for new

algorithms. (3) A test set, which is used at the end of development to accurately judge how

242 C H A P T E R F O U R T E E N

well the algorithm will do on new, unseen data. After the test set has been used once it

ideally should be discarded, just as a teacher cannot give the same test twice to a class of

students. But in practice, data is expensive, and there is a trade-off between paying to

acquire new data and reusing old data in a way that does not cause your model to overfit to

the data. Note that the need for an independent test set is inherent to uncertain problems

themselves, not to the type of solution chosen—you should use proper test methodology

even if you decide to solve the problem with ad hoc rules rather than a probabilistic

model.

In conclusion, as more data is available online, and as computing capacity increases, I

believe that the probabilistic data-driven methodology will become a major approach for

solving complex problems in uncertain domains.

Acknowledgments
Thanks to Darius Bacon, Thorsten Brants, Andy Golding, Mark Paskin, Franco Salvetti, and

Casey Whitelaw for comments, corrections, and code.

243

Chapter 15 C H A P T E R F I F T E E N

Life in Data: The Story of DNA
Matt Wood and Ben Blackburne

DNA IS A BIOLOGICAL BUILDING BLOCK, A CONCISE, SCHEMA-LESS, FAULT-TOLERANT DATABASE OF AN

organism’s chemical makeup, designed and implemented by a population over millions of

years. Over the past 20 years, biologists have begun to move from the study of individual

genes to whole genomes, with genomic approaches forming an increasingly large part of

modern biomedical research. In recent years, however, biologists have been learning to

handle DNA as both a data store and a data source.

There are two stories to tell about DNA pertinent to this book. DNA itself is a method of

encoding data, a digital store of information that predates your hard drive by quite some

time. But there is a second, interlinked story, that of the massive undertaking of producing

this data and determining its meaning.

DNA As a Data Store
A genome is the database for an organism. It is written in the molecules of DNA, copies of

which are stored in each cell of the human body (with a few exceptions). This pattern is

repeated across nature, right down to the simplest forms of life. The information encoded

within the genome contains the directions to build the proteins that make up the molecular

machinery that runs the chemistry of the cell. Now that’s what I call fault-tolerant and

redundant storage.

244 C H A P T E R F I F T E E N

Almost every cell in your body contains a central data center, which stores these genomic

databases, called the nucleus. Within this are the chromosomes. Like all humans, you are

diploid, with two copies of each chromosome, one from your father and one from your

mother. Added to these are the sex chromosomes, two X chromosomes for a female, or an

X and a Y chromosome for a male. The primary components of these genetic data stores

are two strands of DNA, intertwined in the charismatic double helix, as seen in

Figure 15-1.

Each strand of DNA is made up of a chain of bases. There are four bases in DNA—Adenine,

Guanine, Cytosine, Thymine (or A, G, C, and T)—and it is in this quaternary system that

the database is encoded. In humans, there are 3 gigabases of DNA present in two slightly

different copies.

F I G U R E 1 5 - 1 . A short section of DNA, rendered in POV-Ray from PDB file 1BNA, doi: 10.2210/pdb1bna/pdb. (See

Color Plate 51.)

L I F E I N D A T A : T H E S T O R Y O F D N A 245

DNA Makes RNA Makes Proteins

What is DNA for, exactly? The majority of the human genome is apparently of little to no

direct use (although it may have subtle roles). Two percent of your genome comprises the

genes, the sequences that are responsible for building proteins. Just as DNA is a large mole-

cule written in a 4-letter alphabet, proteins are smaller molecules written in a 20-letter alpha-

bet. The sequence that makes up a protein encodes for its shape, and the shape and chemical

structure of a protein determines its function as a cog in the molecular machinery of the cell.

Much like any file format, reading and displaying the encoded information of a DNA

sequence requires a special set of reading apparatus. Unlike any other kind of file, how-

ever, this apparatus operates at the nano-scale inside living cells, aligning individual mole-

cules in a specific sequence, based on the order of bases in the genome. RNA is DNA’s

shorter-lived cousin. It has an analogous four-letter code, and when a gene is activated,

the protein machinery produces copies of that gene in RNA. These copies are transferred

to the protein-based machinery for translation into protein molecules; each molecule of

RNA can form the template for many protein molecules.

In this way, DNA and protein form a partnership, with proteins providing the machinery

that builds new proteins, as directed by the sequences in the genome. Although DNA is

held to be the “blueprint for life,” it makes sense only in the context of the pre-existing

molecules in the cell, especially the proteins.

By controlling the production of the proteins responsible for activating a gene, the cell can

control the production of a protein in response to stimulus or another need. Through

these mechanisms, other cells can control a cell by sending signal-molecules—for instance,

hormones. Many drugs also work through these mechanisms.

Each gene is “tagged” by surrounding sequences that control the production of the protein

(see Figure 15-2). There are proteins encoded within the genome that specifically target

these tags. Some proteins will increase production, whereas others will block it.

Hacking Your DNA Data Store with Drugs

Imagine if O’Reilly were to produce a book in its “Hacks” series called DNA Hacks, containing

100 ways to modify, refactor, or otherwise “enhance” your genetic database. Half of these

hacks would likely be ways of blocking or promoting the action of a set of proteins called “G-

protein coupled receptors” (GPCR), as it is estimated that half of all drugs target these pro-

teins. For instance, gastric acid secretion is stimulated by signals in the body that act on a par-

ticular GPCR. When the signal molecule hits the GPCR, a series of interactions take place

F I G U R E 1 5 - 2 . A stretch of DNA containing a gene also contains nearby regions that interact with the cellular machinery

to regulate its expression; here, a gene is preceded by a promoter element and an enhancer element, which “tag” the gene

so the cell knows when it should be expressed. (See Color Plate 52.)

Enhancer Promoter Gene

246 C H A P T E R F I F T E E N

that turn on and off genes in your DNA. Zantac, used to treat ulcers and heartburn, acts by

getting in between it and the GPCR and blocking this signal. Just as people have long used

clever hacks in their email clients to prevent spam email getting through (e.g., preventing

signals containing “V1Agr4”), Zantac is a clever hack that prevents the signal “more acid”

from getting past the cell wall.

There is a form of DNA “metadata” worth mentioning here. Although the genome is gen-

erally best regarded as a read-only database, DNA can be chemically modified as a

response to environmental factors, resulting in the suppression of some genes. These

chemical changes don’t alter the code itself; rather, they provide an additional “annota-

tion” that makes the cellular machinery less likely to transcribe the gene. The study of

these modifications, known as epigenetics, and the discovery of their role in our makeup

is still in its infancy. It is known that some epigenetic changes switch off genes that won’t

be needed in a particular cell (a cell directed to be muscle will need a different comple-

ment of genes than a liver cell). What is exciting, and would doubtless feature in future

editions of DNA Hacks, is that genes may be switched off in response to the environment.

For instance, growth-promoting hormones can be switched off as a response to starvation.

This is of great interest because these changes may be passed on to children, meaning that

changes acquired in response to how we live our lives affect our descendants’ genes in

ways previously thought impossible.

Cancer

Cancer is a disease where a group of cells grows uncontrollably. A cell’s growth and loca-

tion are controlled by its genes, meaning it will only divide in a controlled fashion. Fur-

thermore, the human genome contains many genes known as tumor-supressor genes,

which are responsible for shutting a cell down when it displays uncontrolled growth. So

how does cancer happen? The answer lies in database corruption. Chemical carcinogens

(e.g., those in tobacco), radiation, and viruses can all make modifications to your DNA.

When a computer hard drive suffers a small number of changes, you might not even

notice the difference. But enough damage, and programs will start crashing, and files

won’t open. The same is true of the genome. Do enough damage, and the regulation of

genes will go haywire, causing uncontrolled expression. If you hit the right gene, then the

cell could start sending itself signals to grow and divide. Other genes (such as tumor-

supressors) could be deactivated entirely, and you are on the road to cancer.

Of course, hard drives are mostly quite reliable. Most include systems that detect and

remap bad sectors. They also contain systems that detect when a disk has been damaged

and alert the user (e.g., SMART monitoring). For additional reliability, you might mirror

one hard drive on another in a RAID1 array. With two hard drives that should be identi-

cal, if one goes wrong it can be replaced with another and the data put back. The cell con-

tains its own machinery to detect and repair DNA damage. Recall that the DNA molecule

exists as a double helix, with each base on one strand complementary to the matching

base on the other. If damage is done to one strand, it can be repaired by using the other as a

template (the RAID1 approach). Other mechanisms exist to repair more extensive damage.

L I F E I N D A T A : T H E S T O R Y O F D N A 247

If the damage cannot be repaired, then the tumor suppressor genes kick in, preventing cell

division, and ultimately initiating programmed cell death, and hopefully the cell can be

replaced (the SMART approach).

Consider that the human body is estimated to have 100 trillion cells. Anyone involved in

the running of a compute cluster with (say) 5,000 hard disks will know how often they

fail, and may wonder why it is that we don’t get cancer a lot more than we do!

Replication

As mentioned earlier, DNA is structured as two intertwined strands. They are complemen-

tary: each of the four bases of DNA has a complement (A complements G, and C comple-

ments T) that appears opposite it on the other strand. Watson and Crick noticed this in the

now famous understatement in their paper revealing this structure of DNA: “It has not

escaped our notice that the specific pairing we have postulated immediately suggests a

possible copying mechanism for the genetic material.”

Each DNA strand is a template for the other, so to make copies of a double helix, the cell can

separate the two and build up a new strand on each template using each base’s complement.

When a cell divides to make two new cells, this is exactly what happens (see Figure 15-3).

F I G U R E 1 5 - 3 . DNA replication proceeds by using the original two strands (white) as templates for two new strands

(black), resulting in two new double-stranded molecules (image from http://genome.gov/glossary.cfm).

G

New
strand New

strand

DNA replication
C

T A

248 C H A P T E R F I F T E E N

Cracking the Code

Imagine a future civilization unearthing a 21st-century disk drive. Even if the civilization

were able to understand the filesystem (as detailed earlier), a text file on the disk is ulti-

mately stored in binary. Without knowledge of the 7-bit ASCII table that converts each

stretch of 7 bits into a letter, the message is unintelligible.

The equivalent code in the genome began to be reverse-engineered in 1961 by Francis

Crick and Sydney Brenner. ASCII was designed to take a two-letter alphabet and convert

it to around 90 characters, necessitating the use of 7 bits per character as 27=128 (in prac-

tice, an extra bit was originally used for parity). In DNA, a four-letter alphabet must

encode for 21 characters (20 amino acids and a STOP signal). Thus three bases are needed

(43=64) per character (see Table 15-1).

For instance, the three bases ACT encode for the amino acid threonine. Whenever the

ACT triplet is encountered within a gene by the translation machinery, a threonine is

inserted into the growing protein molecule. Notice that there are many more codes (64)

than signals (20 amino acids + the stop signal). This means the triplet code can have built-

in redundancy—most amino acids are encoded by more than one codon.

In practice, for many codons, the last base either doesn’t matter or is the least significant.

The result of this is to maximize the probability that a mutation (a change of base, e.g., an

A instead of a T) will have no effect on the protein, and so protect against the potentially

damaging effect of changes in protein structure.

T A B L E 1 5 - 1 . The universal genetic code; each possible three-letter combination corresponds either to

the “stop” code or to one of 20 amino acids represented by their three-letter abbreviation

T C A G

Fi
rs

t b
as

e

T

Phe

Ser

Tyr Cys
T

Third
 b

ase

C

Leu STOP
STOP A

Trp G

C Leu Pro

His

Arg

T

C

Gln
A

G

A
Ile

Thr

Asn Ser
T

C

Lys Arg
A

Met G

G Val Ala

Asp

Gly

T

C

Glu
A

G

L I F E I N D A T A : T H E S T O R Y O F D N A 249

The human genome has grown over billions of years by the incorporation of chance mis-

takes. Accordingly, it is full of elements that have no functional purpose, and others

whose functional purpose is only dimly understood. Although the term “Junk DNA” has

now fallen out of fashion, there are certainly huge amounts of DNA that exist only

because the selective pressure to remove them is too weak, or nonexistent.

Some elements are able to copy and paste themselves around the genome. For instance,

the Alu element, a fragment of around 300 bases, contains the information required to

copy itself into RNA (a shorter-lived molecule very similar to DNA), and then back into

the genome in another position. The result of this is similar to the effect of asking Jack

Torrance from Stanley Kubrick’s The Shining to cowrite a book with you, inserting the

phrase “All work and no play makes Jack a dull boy” thousands of times in between sen-

tences. Alu elements make up 10% of the human genome. The presence of these ele-

ments makes human genomics more difficult than that of smaller organisms, whose

constraints on genome size prevent these elements from proliferating.

DNA As Digital Storage

The forces of evolution shape the genome. But when Darwin first postulated the idea of

evolution, he knew he had a problem. Common sense would tell you that should a taller

and a shorter person breed, and their child happens to be of intermediate height, then the

hereditary information for “tallness” and “shortness” have been blended together irreversibly.

Sexual reproduction should be driving species to a state of averageness. In fact, genes do not

mix together irreversibly, as was first discovered by Darwin’s contemporary, Gregor Mendel.

The reason is the digital nature of DNA. The medium-size child will have exact copies of one

set of genes from the father, and another from the mother. There is no mixing together of the

genes: for instance, at no point does a sequence have a half-A-half-T state in it. So the infor-

mation there is not lost, and can be passed on unmodified to the grandchildren. Complex life

can evolve, and hence exist, because of the digital storage allowed by DNA.

Evolution As an Algorithm

We know the basic algorithm that created the DNA in your cells: evolution. The DNA

sequence changes, due to mutations. So how does evolution shape DNA? Surprisingly, the

majority of evolution (defined as change in the DNA sequence from one generation to the

next) is selectively neutral, i.e., it involves changes that have no effect on the organism.

Why is this? Clearly, when such a change occurs in a small population there is a chance

that this change could, in the future, predominate in the population. For a larger popula-

tion, such changes are less likely to predominate, but there is a corresponding increase in

the number of such changes—so neutral evolution still dominates.

This is important for interpreting differences between individuals, and between species.

Neutral evolution is the null model for any differences between two genomes. This means

that to show that the differences on the same gene between two species are of interest, sci-

entists frequently seek to show that the “algorithm” of neutral evolution could not have

produced the two sequences. This means estimating the rate of change and determining if

250 C H A P T E R F I F T E E N

it is either faster or slower than would be thought by the neutral theory. If there are more

changes than would be expected, then perhaps this is because such changes have provided

functional improvements to the organism, and the changes spread rapidly through the

population. If changes are slower, then the gene is likely important enough that the

majority of changes are not neutral and so have been rejected by evolution.

The huge number of variations within species means that the reference human genome,

currently thought of as a linear string that represents an amalgam of several people, could be

more reasonably represented as a graph that includes the variations within the population.

An individual’s genome could then be represented by a traversal of the reference graph.

DNA As a Data Source
To a programming language, DNA is simply a string:

char(3*10^6) human_genome;

The full genomic information for man consists of 3 billion characters and is easily handled

in memory by even the most inefficient home-brewed language. However, the process of

determining the exact order of these 3 billion bases requires a significant effort spanning

chemistry, bioinformatics, laboratory procedures, and a lot of spinning disks.

The Human Genome Project aimed, for the first time, to sequence every one of these char-

acters. A number of large, high-throughput institutes from around the world put academic

competition aside and set about a task that would last 13 years and consume billions of

dollars. Their aim was to produce a robust, accurate map of the human genome, available

to all, for free. The consortium of scientists from the UK, America, and Japan succeeded,

with the first draft human genome appearing in the scientific literature in February 2001.

The genome, without any additional annotations or associated data, weighed in at 10 giga-

bits, a reasonably large size in an era without iPods or USB thumb drives. However, the

overall weight of this data was much greater, thanks to the exponentially increasing stor-

age requirements as this data was replicated across the globe. Scientists proceeded to ana-

lyze the data, scouring it for genetic markers and disease indicators, and comparing it to

other available genomes from mice, yeast, and pathogens. These 10 gigabits have formed

the foundation of modern biological research.

Skip forward to 2008. The human genome has been well annotated (http://ensembl.org),

and over 40 other species have been sequenced, including the mouse, chimpanzee, and

the duck-billed platypus. In a corner meeting room of the Morgan Building on the

Genome Campus, a meeting is taking place at the Wellcome Trust Sanger Institute

between IT professionals, informaticians, and scientists to discuss the next generation of

DNA sequence production.

Numbers are presented from several competing sequencing technology platforms, all look-

ing to exploit the nonredundant nature of genomic information. Instead of sequencing

long reads of thousands of base pairs as had been done with the original human genome

http://ensembl.org

L I F E I N D A T A : T H E S T O R Y O F D N A 251

sequence, these short reads would consist of only 30–50 bases, sufficient to place that read

at a specific position on a specific chromosome with a high degree of certainty in the sea of

3 billion. The kilobase counts of capillary genome sequencing are quickly eclipsed by

megabases as the details of the data requirements of short-read sequencing became appar-

ent. Whiteboards fill quickly with hand-drawn diagrams of the process, which uses images

of fluorescing bases to identify the correct sequence of these shorter fragments of DNA.

The throughput and number of new instruments required to support the scientific goals of

the Institute were discussed. One number stood out on the whiteboard against all the rest.

Within six months, the Institute would be producing 50 terabits of fresh data. Each week.

A hush fell on the meeting.

Even to facilities capable of supporting the large numbers of sequencing instruments

(100+) for the human genome sequencing, and with dedicated on-site hardware for ana-

lyzing and annotating this data, no realm of biology had handled so much raw informa-

tion at that date.

The new sequencing platform would eclipse the already large-scale data requirements of

the Institute by orders of magnitude. To that point, data requirements had grown roughly

exponentially within the Institute’s 15-year history, culminating in around 17,000 online

disks driving a multi-petabyte storage system. The new sequencing technologies would

generate as much again over the next 12 to 18 months.

True to form, the new wave of sequencing instruments started to arrive at the Genome

Campus, and six months later the hush of that initial meeting was drowned out by the

furious construction of server farms, storage arrays, software, databases, and information

management tools in the largest scale-up in an industry’s history.

A Quantum Leap

The new technologies presented a quantum leap in genomic sequencing. Previous genera-

tions of instruments required very large-scale facilities to produce a megabase of usable

sequence. Sequencing a single genome took many years and was expensive.

Sequencing a single genome is useful when looking to compare the genomes between

species. Portions of DNA sequence with biological importance are conserved through evo-

lutionary history, and identifying these conserved regions helps biologists identify novel

genes, which may play a role in disease.

Since an individual kilobase sequencing run is rarely completely accurate, for statistical

power there is real benefit in being able to sequence the same base on multiple, indepen-

dent measurements, hence the need for such large-scale deployments of instruments. The

new generation of short-read sequencing instruments, however, read a single base many

millions of times per run, providing additional resolution to the resulting genome, which

is essential in comparative genomics.

252 C H A P T E R F I F T E E N

Because of this additional resolution, short-read sequencing allows the construction of a

large number of individual human genomes for the first time, which can provide huge

insight into the genomic database of a single person. The comparison of these genomes

can help identify why one person might be more disposed to high blood pressure or breast

cancer, for example, compared to others. Differences in a very small number of bases in

the sequence of a genome can lead to these genetic predispositions; from a single base

(called SNPs, single nucleotide polymorphisms), to collections of repeating units (CNV),

these small changes amongst 3 billion bases can hold the key to many disease states. By

comparing the bases sequenced at a particular location on the DNA string from the many

millions of copies sequenced by the short-read technologies, one can decide with confi-

dence whether a particular difference in a base between two individuals is a sequencing

error or really the site of one of these small nucleotide changes. Additional annotation from

patient records and other research can then reveal whether these are linked to disease.

“My God, It’s Full of Bases...”

The technical implementation of such genomic sequencing platforms is worthy of discus-

sion. It is essentially a linear assembly pipeline, in which an individual’s DNA acts as a raw

material, quantified and then prepared for a photochemical reaction in the sequencing

instrument. After being sheared into millions of short fragments, those fragments are cop-

ied millions of times, and then adhered to a specially prepared glass slide. Specially tagged

bases are washed over these prepared strands of short bases, binding to their complemen-

tary pair: As to Ts, Cs to Gs. When placed under a laser, these bases fluoresce with differ-

ent wavelengths, and a photograph is taken that shows thousands of dots, each one a

cluster of glowing DNA bases (see Figure 15-4). It is at this point that the huge require-

ments of the platform appear, in the form of a multiplier. While each image is only at a

megapixel resolution, four images are taken for each base in the short reads (one per base,

at each location). That’s just 148 images.

However, each image covers only a fraction of the clusters of DNA, which are imaged in

330 individual tiles (48,840 images) and arranged into 8 lanes (390,720 images). Usually,

the DNA strand is sequenced in both the forward and reverse directions, too (781,440

images). There is also additional metadata produced by the sequencing run in the form of

laser intensity and fluidic measurements.

All in all, an instrument can produce 1 terabits of data a day.

This data is then passed through image analysis software, which aligns each set of images

to determine the sequence of bases based on the intensity of the fluorescence. This in turn

generates files containing the individual strings, quality scores, and intensity details, along

with cluster position and other associated metadata. In practice, to aid with additional

analysis downstream, this information is actually written in two file formats: fastq and

SRF, a hierarchial data format reappropriated from colleagues in the astronomy world.

L I F E I N D A T A : T H E S T O R Y O F D N A 253

Simple increases in image resolution or read length have huge implications for data han-

dling and analysis. The first version of the new sequencing platform at Sanger was capable

of working with short reads of 36 bases each. A read length of 100 base pairs (such as the

prototype currently up and running in Sanger’s R&D labs) would lead to a three-fold

increase in images (2,334,320 images), across a platform of just under 40 instruments

(maybe more by the time you read this), giving a grand total of 93 million images for each

and every platform run, which lasts around a week. In total, that’s around 75 terabits of

data per week.

How is it handled?

Fighting the Data Deluge
Large deployments of sequencing instruments are necessary to support the construction of

these genomic data sets, and to support large-scale, genome-wide associate studies such as

the 1000 Genomes Project (http://1000genomes.org) and the International Cancer Genome

Consortium (http://www.icgc.org), which hope to add tremendous value to biological

research now and over the next 20 years. The large genome centers around the world

have taken up this challenge admirably. Sanger, for example, has over 35 Illumina GA2

genome analyzers, which run in a high-throughput facility on the Genome Campus in

Hinxton, about 10 miles south of Cambridge in the UK.

F I G U R E 1 5 - 4 . An Illumina GA2 sequencing image; each bright dot is a cluster of many thousands of DNA molecules,

fluorescing under a laser.

http://1000genomes.org
http://www.icgc.org

254 C H A P T E R F I F T E E N

The Sanger Institute’s Sequencing Platform

The sequencing platform operates as a core service within the Institute, available to all

genomic research currently underway by the faculty and their collaborators. Demand for

the facility is extremely high, and the Institute has developed a range of operational tools

and processes to help handle this demand.

Project management

A friendly collection of project management tools called Sequencescape helps investigators

plan their experiments, and sequencing facility administrators plan capacity and through-

put. Sequencescape was developed and is maintained by a small core team located in-house.

It’s written in Rails, runs on a standard stack of blades, uses MySQL, and is delivered to

users via the intranet (http://www.sanger.ac.uk/).

When a new project requires sequencing (which can be anywhere from a single run on a

single sample of interest yielding around 1 gigabase to many thousands of runs across tens

of thousands of samples), it is registered in Sequencescape, along with some associated

metadata, such as scientific rationale, budget information, and contact details.

Each sample to be sequenced is then registered in the same way, and requests for

sequencing runs are submitted to the facility. This request forms the basic unit of work for

the sequencing platform, and the physical DNA samples are handed over to the laboratory

teams for preparation and sequencing.

Preparing a sample for sequencing is a complex, manual process involving a continually

refined laboratory pipeline. Physical samples of DNA are moved from one tube to another,

between pieces of manual apparatus, robotic and computerized components, and even

between physical laboratories. Recording the “life story” of a sample is crucial, since this

provenance metadata can be important when reviewing sequence results or laboratory

throughput or in identifying laboratory pipeline components that are miscalibrated or

malfunctioning. Should the DNA in a sample be mishandled in any way, the instrument

will fail to sequence it: an expensive and time-consuming problem. By evaluating and

analyzing the provenance metadata, it is possible to view commonalities between failures,

highlighting protocol deviations, malfunctioning equipment, or miscalibrations. Through

continual monitoring and review, the laboratory procedures can continue to roll out qual-

ity DNA samples, ready to sequence.

Biological laboratory procedures are, if you’ll excuse the pun, continually evolving.

Refinements, updates, novel approaches, or complete overhauls are common as new

methods are published in the scientific literature or discussed at conferences. New instru-

ments and robotic automation is introduced. Maintaining robust provenance capture in a

highly flexible domain such as laboratory workflows is extremely difficult. It soon

becomes unworkable in high-throughput environments where even small inefficiencies or

holdups can lead to long backlogs.

http://www.sanger.ac.uk/

L I F E I N D A T A : T H E S T O R Y O F D N A 255

Nowhere is this truer than in genomic sequencing, where genomic material from individ-

ual patients may be of limited, short supply, with a short shelf life. DNA prepared for

sequencing does not last forever, and for DNA that cannot be re-sourced, laboratory

processing or sequencing delays can prove disastrous.

To balance the need for effective provenance collection with a time-sensitive, highly

dynamic workflow, modern approaches to data capture are required: we never want soft-

ware to be the rate-limiting step in a workflow.

Flexible Data Capture

Instead of classical database refactoring, typically involving adding, removing, or renaming

fields on a database schema, the high-throughput production pipeline at Sanger uses a col-

lection of data modeling tools that allow data descriptions to be changed at runtime.

When a laboratory protocol is updated to include a new set of instruments or a faster

approach to an existing step, the provenance information captured that relates to that task

can be restructured on the fly by laboratory staff. This helps lead to the efficient running of

the laboratory, frees up developer time, and keeps data collection bang up to date with the

set of laboratory procedures currently in play.

For the most part, the databases that run the production systems are traditional, modeled

around real-world objects such as Projects, Samples, and key protocol components, for

example, Workflows and Tasks. However, in addition, metadata is also modeled as first-

class objects, with representations for Descriptors, Values, and a class of object referred to

as a Family. A Family can have many descriptors, each providing a definition of a data

field, including the name, type, UI element, whether it is a required field, and more. Each

workflow item then effectively inherits a family’s fields, with individual values.

This allows the quick specification and revision of new types of projects, samples, and

workflow tasks.

The user interfaces for all data entry pages are dynamically generated using this informa-

tion, as are the various reporting tools used to monitor the sequencing platform and labo-

ratory workflow throughput. Families are versioned, allowing older projects to continue

to be accessible, and migration and curation tools provide easy routes for upgrading older

objects to newer descriptions.

Computationally, this process is faster than you think. With sufficient indexing and data

denormalization between tables, the web application remains responsive even under the

heavy load of a high-throughput system. As certain properties begin to cement into the

workflow (for example, everything has a name, a unique identifier, and creation and modi-

fication dates), they are easily refactored back into first class database fields for faster queries.

This attempt to streamline the data modeling of laboratory workflows has been largely

successful. The benefits continue to be apparent, as this optimization for flexibility has

allowed the same infrastructure to be used for other laboratory workflows within the

Institute (genotyping followed quickly) with very little additional development overhead.

256 C H A P T E R F I F T E E N

Sequencescape’s project management and laboratory information management tools are

open source, and available to download from http://www.sanger.ac.uk.

Instrument and Data Management

At Sanger, the entire short-read sequencing pipeline operates as a collection of hosted ser-

vices, with interoperability built around defined interfaces to web services. Project man-

agement and laboratory information management eventually give way to instrument

management tools, which monitor, control, and, where possible, automate the entire

instrument platform.

Each sequencing instrument is attached to a PC, which controls the instrument and pro-

vides a temporary staging area for the image data streaming from the instrument. Unfor-

tunately, especially for longer reads, disk space on this local machine quickly becomes

insufficient to store an entire run’s data, and the computational power of desktop-class

machines is insufficient to run the image, sequence, and quality analysis of the data.

For this reason, the data is moved from the attached instrument PC through a 10-gigabit

pipe to a larger storage array: 400 terabits of Lustre managed EVA storage. This is net-

worked to a 1,000-node cluster, which performs the primary analysis and image align-

ment duties on the raw images. Managing storage on this scale is hugely problematic,

requiring constant intervention, extension, and supervision from a crack team of system

administrators, vendors, and in-house data managers. This array holds data for around

four weeks; following analysis and eventual base calling, this raw data from the instru-

ment and associated instrument-run details (laser intensity, fluidic data, etc.) is curated

and archived as necessary, before being deleted.

The scale of the raw sequencing data is vast and expensive to handle; however, once the

images have been aligned and the individual bases of sequence identified, each run pro-

duces around 30 gigabits of sequence and quality data. While the raw data is not backed

up (restoring from tape would take three months), each raw image from the sequencing

run is scaled down to low-quality JPEG files, and stored in a database. Although unsuit-

able for analysis, this data is useful should any run require a manual review to identify

imaging problems or artifacts (oil, poor DNA clustering, and even fingerprints aren’t

uncommon).

Once the sequencing data is available, it is stored in two formats in a high-performance

Oracle database. While production systems make good use of databases, bioinformatics

tools tend to continue to work against flat files on a physical filesystem. To be sure that we

cater to all tastes, the vast swaths of sequence information available in this sequence

archive are also presented to Sanger’s internal compute farms via a Fuse user-space file-

system. This approach scales surprisingly well.

The sequence data is then passed through a series of quality control steps, which again run

on the sequencing analysis cluster, and check for low sequencing yield, high levels of

unknown bases, or low complexity sequence, all of which are telltale signs for sequencing

http://www.sanger.ac.uk

L I F E I N D A T A : T H E S T O R Y O F D N A 257

errors. The QC results are passed back to Sequencescape, and the investigator and collabo-

rators are alerted to their new data and its location in the Fuse filesystem. In the event

that the sequencing results are not of sufficient quality, or if there has been a problem in

the laboratory, Sequencescape automatically queues the sample for reprocessing.

For many of the projects undertaken at Sanger, and only when consent has been given,

this data is made available to all: from the original project and sample metadata, to the lab-

oratory provenance information and each and every single one of the millions of sequenc-

ing reads per sample. These are all available to download to anyone who might have

interest, for free, including the latest draft genome data (http://www.ensembl.org/index.

html), the individual sequencing traces (http://trace.ensembl.org/), and in the next few

months, every single short-read sequence across all projects (keep an eye on http://www.

ebi.ac.uk). This represents a fantastic resource for biomedical researchers, and continues

the best traditions of free and open data access of the original human genome project.

The Future of DNA
These new sequencing technologies and the data generated as part of the projects using

them are laying the foundation stones of the next era in modern biology. The data man-

agement, curation, and analysis tools using this data will continue to evolve, and so it’s

worth taking a slightly longer view on the future of DNA.

How to Become a Genetic Hacker

More than other data-intensive areas, genomics has a great history of providing open,

online data repositories, from a variety of genome browsing and annotation tools (such as

Enesembl and UCSC), to details of diseases linked to genes (HapMap, SNPedia) and per-

sonalized genomics services such as 23andMe and Navigenics. So much so that anyone

can become a genetic hacker these days.

Next Next-Gen

At present, such companies provide only a high-level overview of certain points of interest

along the genome. But innovation continues unabated with the development of the next

generation of sequencing instrumentation and genome analyzers. Companies such as

Pacific Biometrics and Oxford Nanopore are hard at work on driving the current megabase

read counts into the gigabase region and beyond. With the advent of higher throughput,

and the associated drop in costs, the goal of the $5,000 and even the $1,000 genome, and

the point at which therapeutic genetic sequencing becomes cost-effective, draw ever

closer.

The Era of Big Data

With any of these approaches, one thing is for sure: data requirements are only going to

increase. The era of big data has arrived for genomics, and also for modern biological

research, which is built upon it. Data will continue to provide extremely large constraints

http://www.ensembl.org/index.html
http://trace.ensembl.org/
http://www.ebi.ac.uk
http://www.ebi.ac.uk

258 C H A P T E R F I F T E E N

on analysis and research, and it is clear that as more and more research and hospital teams

perform genetic sequencing in-house, the role of the large genomic centers will look very

different. Providing a flexible computational platform, along with efficient sequence

search, alignment, and assembly tools, plus safe housing for the millions of genomes, will

become vitally important. They will also bring with them questions of technical imple-

mentation, privacy, and efficacy, all of which are hotly discussed topics today in the bio-

medical arena.

While these impeding constraints may point to some clouds gathering on the horizon, the

future of DNA is definitely bright.

Acknowledgments
The authors would like to thank the Wellcome Trust for their continual support of open

access and open data in biomedical research.

259

Chapter 16 C H A P T E R S I X T E E N

Beautifying Data in the Real World
Jean-Claude Bradley, Rajarshi Guha, Andrew Lang, Pierre

Lindenbaum, Cameron Neylon, Antony Williams, and
Egon Willighagen

The Problem with Real Data
THERE ARE AT LEAST TWO PROBLEMS WITH COLLECTING “BEAUTIFUL DATA” IN THE REAL WORLD AND

presenting it to the interested public. The first is that the universe is inherently noisy. In

most cases collecting the same piece of data twice will not give the same answer. This is

because the collection process can never be made completely error-free. Fluctuations of

temperature, pressure, humidity, power sources, water or reagent quality, precision of

weighing, or human error will all conspire to obscure the “correct” answer. The art in

experimental measurement lies in designing the data collection process so as to minimize

the degree to which random variation and operator error confuse the results. In the best

cases this involves a careful process of refining the design of the experiment, monitoring

size and source of errors. In the worst case it leads to people repeating experiments until

they get the answer they are expecting.

The traditional experimental approach to dealing with the uncertainty created by errors is

to repeat the experiment and subject the results to statistical analysis. Examples of repeti-

tion can be found in most issues of most scientific journals by looking for a figure panel

that contains the text “typical results are shown.” “Typical results” is generally taken to

mean “the best data set we obtained.” Detailed statistical analysis, although in principle a

more rigorous approach, can also be controversial and misleading. Arguments often rage

260 C H A P T E R S I X T E E N

in the comments pages of medical journals over the appropriate approaches to take to

remove confounding correlations from the analysis. The links between skepticism about

“typical” results and arguments over statistical approaches is a lack of access to the raw

data. If the underlying data were available, then people could simply do the analysis and

check it themselves. This would likely not reduce the number of arguments, but would at

least mean they were better informed.

The second part of the problem is that, until recently, space limitations in print journals

have limited the amount of data that can be presented, making it difficult or impossible to

present the whole body of data and analysis that supports the argument of the paper.

However, in a world where publishing has moved online, this is no longer a viable excuse.

It is possible to present the entire data set on which an argument is based, at least in

research where data volumes are in the kilobyte to gigabyte scale. There is therefore a

strong argument for presenting the whole of the data. This, however, raises the problem of

how to present data that may be inconsistent, that may include mistakes, but nonetheless

presents the whole picture of how a conclusion was reached. In short, the question is how

to show the beauty that lies under the surface of the data in a clear way, while at the same

time not avoiding or hiding the blemishes that may lie on the surface.

We believe that the key to successfully reconciling these apparently conflicting needs is

transparency. Providing the raw data in as comprehensive a fashion as possible and a full

description of all the processing and filtering that has taken place means that any user can

dig down to the level of detail he or she requires. The raw data will often be difficult or

impossible to present in a form that is naturally machine-readable and processable, so the

filtering and refinement process also involves making choices about categorization and

simplification to provide clear and clean datafiles that can be repurposed. Here we describe

the approach we have taken in “beautifying” a set of crowdsourced data by filtering and

representing the data in an open form that allows anyone to use it for his own purposes.

We show the way this has enabled multiple researchers to prepare a variety of tools for

visualization and analysis, creating a collaborative network that has been effective in ana-

lyzing the results, suggesting further experiments, and presenting the results to a wider

audience in a way that traditional research communication does not allow.

Providing the Raw Data Back to the Notebook
As part of a wider program of drug discovery research (Bradley 2007) led by Professor

Jean-Claude Bradley, we wished to predict the solubility of a wide range of chemicals in

nonaqueous solvents such as ethanol, methanol, etc. Of greatest interest was the solubility

of aldehydes, carboxylic acids, isonitriles, and primary amines—components required for

the Ugi reaction that the Bradley group use to synthesize potential antimalarial targets

(Bradley et al. 2008). The solubility of a specific compound is the quantity of that com-

pound that can be dissolved in a specific solvent. Building and validating a model that

could predict solubility would require a large data set of such solubility values. Surpris-

ingly, there was no readily available database of nonaqueous solubilities. We therefore

elected to crowdsource the data, opening up the measurements to anyone who wanted to

B E A U T I F Y I N G D A T A I N T H E R E A L W O R L D 261

be involved (http://onschallenge.wikispaces.com/). However, this poses a series of problems.

As anyone can contribute measurements, we have no upfront way of checking the quality

of those measurements.

The first stage in creating our data set therefore required the creation of a detailed record

of how each and every measurement was made. The measurement techniques, precision,

and accuracy of different contributions all vary, but all the background information is pro-

vided in human-readable form. This “radical sharing” approach of making the complete

research record available as soon as the experiments are done, called Open Notebook Sci-

ence (http://en.wikipedia.org/wiki/Open_Notebook_Science), is not common amongst profes-

sional researchers, but it is a good fit with our desire to make a complete and transparent

data set available. We utilize a Wiki, hosted on Wikispaces (http://onschallenge.wikispaces.

com) to hold these experimental records, and other services such as GoogleDocs (http://docs.

google.com) and Flickr (http://flickr.com) to hold data (Figure 16-1).

F I G U R E 1 6 - 1 . Using free generic services to host the record of experimental work and processed data. (A) Part of the

page of a single experimental measurement. (B) Images taken of the experiment hosted on Flickr. (C) A portion of the

primary data store on a GoogleDocs spreadsheet. (See Color Plate 53.)

http://onschallenge.wikispaces.com/
http://en.wikipedia.org/wiki/Open_Notebook_Science
http://onschallenge.wikispaces.com
http://onschallenge.wikispaces.com
http://docs.google.com
http://docs.google.com
http://flickr.com

262 C H A P T E R S I X T E E N

The actual database of values extracted from the experimental descriptions is stored in a

GoogleDocs spreadsheet to generate the primary aggregated record of the project. Each

and every measurement is presented, along with a link back to the primary record. This

link is crucial whether the data is being read by a machine or by a human, as it provides

both the provenance of the measurement (i.e., who is making the assertion) and the

record of evidence for that assertion. A human can click through to check how the mea-

surement was made, and a machine reader can download or scrape the record if desired.

In a sense the spreadsheet is the first point at which the record from the lab notebooks is

converted into data that can then be criticized and filtered. The choice of a GoogleDoc may

appear an idiosyncratic choice from a technical perspective, but it is based on a number of

requirements: functionality that enables us to present and share the data in its primary

form; an interface that is familiar to experimental scientists and requires a minimum of

additional work on their part; and free and hosted services, maintained by a large stable

company, enabling anyone in the world to replicate this information-processing model

with minimal effort. Finally, there is the ability to access the data via a powerful and flexi-

ble API. Very few other approaches both enable the average scientist to work with, add to,

and download the primary data in a form that is familiar, and also provide powerful pro-

grammatic access to the underlying data.

Validating Crowdsourced Data
As data is collected by different researchers using different methods, incompatible values

are likely to arise. These may appear as outliers or simply as a wide spread of results. Tra-

ditionally, with no additional information, researchers had little choice but to give equal

weight to each measurement or apply statistical methods to exclude outliers. But, as we

have adopted an Open Notebook approach requiring the full record of how each measure-

ment was carried out, each measurement can be evaluated in the context of the informa-

tion recorded. In several cases this allows a scientist familiar with the methods reported to

exclude questionable data points on the basis of inappropriate conditions or a failure to

report an important parameter.

In the case of solubility, mixing time and evaporation conditions proved to be important fac-

tors. A good example of this was the determination of the solubility of 4-nitrobenzaldehyde

in methanol. Of the five measurements taken, three are significantly lower than the other

two (Figure 16-2, shown later in this chapter; http://oru.edu/cccda/sl/solubility/ugidata.

php?solute=4-nitrobenzaldehyde&solvent=methanol). This method was based on preparing a

saturated solution of 4-nitrobenzaldehyde in methanol, evaporating the methanol, and

then weighing the residue left behind. It is crucial that a fully saturated solution is pre-

pared, and this was generally done by adding solute with mixing until visible solid

remained in the tube. By examining the detailed record of the experiments, it is clear that

the three lower values are from experiments where the solutions were mixed only briefly.

The two higher measurements are from experiments where the mixing was carried out

over several hours, showing that extended mixing is required (http://usefulchem.blogspot.

com/2008/12/mechanical-turk-does-solubility-on.html).

http://oru.edu/cccda/sl/solubility/ugidata.php?solute=4-nitrobenzaldehyde&solvent=methanol
http://oru.edu/cccda/sl/solubility/ugidata.php?solute=4-nitrobenzaldehyde&solvent=methanol
http://usefulchem.blogspot.com/2008/12/mechanical-turk-does-solubility-on.html
http://usefulchem.blogspot.com/2008/12/mechanical-turk-does-solubility-on.html

B E A U T I F Y I N G D A T A I N T H E R E A L W O R L D 263

The availability of the raw experimental record enables all researchers both to identify

those measurements that are doubtful and to benefit from the experience of these “failed”

experiments. This is the nature of scientific research. A balance has to be struck between

recording the details of an experiment and being efficient. Often the purpose of initial

experiments is for the researchers to identify what factors are important to pay attention

to. Unfortunately, this information is generally not shared with the research community.

Rather than exclude results that are doubtful, we have opted to tag the measurements

(with “DONOTUSE”) and provide a reason for exclusion. This allows other researchers to

click through to the original lab notebook pages and evaluate the raw data for themselves.

Errors can occur everywhere—including during the validation process—and “incorrect”

values may be useful for some purposes. Full transparency makes it possible for each user

to decide what values she wishes to include in her analysis. It also reduces (but does not

eliminate) the risk that errors remain hidden. An example of this type of markup is dem-

onstrated in the reporting of the measurements for the solubility of vanillin in methanol

(http://usefulchem.blogspot.com/2008/11/what-is-solubility-of-vanillin-in.html).

There is clearly a gray area here between those values we have marked as doubtful or

untrustworthy and those that we have left unmarked despite potential issues or areas of

disagreement. At the end of the day these are matters of scientific judgment, and there is

much opportunity for disagreement. The primary record of the experiments remains avail-

able in every case and can be examined. In addition, the history of the spreadsheet is

available and can also be examined. A balance needs to be struck between providing a

useful data set and the degree to which every decision and mistake can be presented. This

is a challenging balance to get right.

Representing the Data Online
Our aim is to make all of the experimental record and processed data available online. This

raises a number of issues for how to represent the data in a useful form on the Web, including

the choice of standardized identifiers, visualization tools, and approaches to data integration.

Unique Identifiers for Chemical Entities

To make our data useful, it is important that the chemical entities be described using a rec-

ognized standard. Without this, integration with other data sets will be difficult or impos-

sible. In chemistry, some would argue that CAS Registry Numbers (http://en.wikipedia.org/

wiki/CAS_registry_number) would be ideal for identifying chemical entities. However, CAS

numbers are proprietary in nature, cannot be converted to the chemical structure, are a

lookup only, and are dependent on an external organization to issue. We would prefer

identifiers that are open in nature, freely available for exchange, and can be converted to

and from a chemical connection table.

The IUPAC International Chemical Identifier (InChI, pronounced “INchee”) provides a non-

proprietary standard and algorithms along with supporting open source software (http://en.

wikipedia.org/wiki/Inchi) that enable the generation of identity strings that can be converted

http://usefulchem.blogspot.com/2008/11/what-is-solubility-of-vanillin-in.html
http://en.wikipedia.org/wiki/CAS_registry_number
http://en.wikipedia.org/wiki/CAS_registry_number
http://en.wikipedia.org/wiki/Inchi
http://en.wikipedia.org/wiki/Inchi

264 C H A P T E R S I X T E E N

back to structures (see http://www.qsarworld.com/INCHI1.php for a recent review). InChI is

gaining significant support as a standard across software vendors, publishers, and develop-

ers. The problems with the algorithm—which mean it is possible to generate multiple

InChIs for a single structure—are being addressed by the development of the Standard

InChI. For some purposes the InChIKey, a hash of the InChIString, is useful, but this can-

not be converted to a structure and must be used via a lookup table to resolve the chemical

structure.

SMILES (http://en.wikipedia.org/wiki/SMILES) is a common format for representing chemi-

cal compounds, providing strings that are quite compact and can be converted to and from

chemical structures. However, there are multiple forms and implementations of the

SMILES algorithm, leading to multiple SMILES for the same entity. We are currently

using SMILES in this work due to their simplicity and ease of searching. As noted in

“Enabling Data Integration via Unique Identifiers and Self-Describing Data Formats” on

page 269, it is possible to convert our SMILES to InChIs, automatically enabling us to inte-

grate our data into the growing web of data represented by this preferred identifier.

Open Data and Accessible Services Enable a Wide Range of
Visualization and Analysis Options

Given a standardized, free, and accessible storage infrastructure for the primary solubility

data, the next step is to analyze the data. Analysis could range from simply generating a

summary of which measurements have been carried out to complex statistical representa-

tions of models derived from the data. In either case, it is necessary to access the data for

processing by automated routines. It is also desirable to be able to use other sources of

information to enrich the data. This in turn requires a recognized standard to be used in

the primary representation of the data.

The spreadsheet contains a number of columns, with each row being the record of a single

measurement. Both solvent and solute are represented in two different forms: a human-

readable common name and a SMILES code. As with the choice of GoogleDocs as the pri-

mary representation of the data, the use of both human-readable and machine-readable

representations is crucial to gaining the most benefit from the data set. The only piece of

information that does not require two representations is the numerical representation of

the solubility itself.

As has been noted earlier, we made the decision to not remove the most questionable val-

ues from the primary data record. This poses a problem for machine readability, as there is

no accepted standard approach for saying “this number is a bit dodgy.” For this work we

have elected to mark records that are believed to be inaccurate after human curation and

to give a reason for the marking. This enables any user to make choices about which

records he wishes to include in any analysis, either manually or automatically. For any

further analysis, the data, as represented in the spreadsheet, must be accessed. The sim-

plest approach would be to simply export the data, for example, into a comma-separated text

file, and analyze it using some external software. However, this would lose the immediate

http://www.qsarworld.com/INCHI1.php
http://en.wikipedia.org/wiki/SMILES

B E A U T I F Y I N G D A T A I N T H E R E A L W O R L D 265

link to the most up-to-date data. The GoogleDocs API makes it straightforward to generate

web-accessible applications while maintaining the link to the “live” data.

As an example of such an application, we have created a web service that allows users to

query the data stored in the spreadsheet and obtain a tabular summary (Figure 16-2). The

form-based query interface provides a rapid and intuitive mode of access to the relevant

data. The page is simple HTML along with JavaScript and does not require any software on

the client side. The data is accessed asynchronously from the Google spreadsheet using the

API provided by Google. Once the data is retrieved, one can perform a variety of calcula-

tions. In this case, we determine the mean and standard deviations of the solubility, which

can then be used to dynamically highlight entries that appear to be anomalous.

While the tabular display of subsets of the raw data is very useful, visualizations can be

used to effectively summarize the results of queries. The query application employs the

Google Visualization API to generate bar charts based on the data extracted from the

spreadsheet. Given the ease with which the data can be extracted from the spreadsheet, one

can easily generate a variety of visualizations. In our case, a simple bar chart displaying the

solubility of a compound in various solvents provides a rapid summary of the results.

F I G U R E 1 6 - 2 . Visualization tools for examining the solubility data.(A) A simple form-based input uses JavaScript and

the GoogleDocs API to generate (B) a graphical representation of the solubility values selected and (C) a tabular output of

the data with rendered 2-D chemical structures. The service is available at http://toposome.chemistry.drexel.edu/

~rguha/jcsol/sol.html. Note that these and other services described are dynamic and may not give the same results as

those shown here for the same query. (See Color Plate 54.)

266 C H A P T E R S I X T E E N

Another aspect of the application is that the table contains 2-D depictions of the chemical

structures provided via a REST-based service at Indiana University. A SMILES code is

appended to the service URL to insert the 2-D image of the structure into an arbitrary web

page. Once again, these features require no special software on the client side. This makes

distribution of this specific application extremely simple; one simply has to copy the HTML

page to another web server.

Although this is a fairly simple application, it highlights the distributed nature of the solu-

tion, combining open data with free visualization methods from multiple sources. More

importantly, the distributed nature of the system and free accessibility of the data allow

experts in different domains—experimentalists generating data, software developers creat-

ing interfaces, and computational modelers creating statistical models—to easily couple

their expertise. The true promise of open data, open services, and the ecosystem that sup-

ports them is that this coupling can occur without requiring any formal collaboration.

Researchers will find and use the data in ways that the generators of that data never con-

sidered. By doing this they add value to the original data set and strengthen the ecosystem

around it, whether they are performing complementary experiments, doing new analyses,

or providing new services that process the data. And, all the time, the link back to the

original record can be maintained.

Integrating Data with a Central Aggregation Service

A valid criticism of our approach is that if it is widely taken up, it will lead to the presence

of many disparate and disconnected data resources. Although it is technically feasible to

aggregate such resources together using search tools, it remains the case that the research-

ers usually use a small set of preferred services as their route into the data they are inter-

ested in. The gold standard of curated data sets of chemical information is the Chemical

Abstracts Service (CAS) maintained by the American Chemical Society. The CAS Registry

contains over 40 million substances (http://www.cas.org/newsevents/connections/derivative.

html) comprised of data extracted from publications, patents, chemical catalogs, and,

increasingly, online data sources such as ChemSpider (http://www.chemspider.com/blog/cas-

chemspider-connectivies-and-unintended-collaboration.html).

ChemSpider is a web-based resource for chemists developed with the intention of “Build-

ing a Structure Centric Community for Chemists.” Containing well over 20 million unique

chemical entities, sourced from over 150 data sources, ChemSpider has become one of the

primary Internet resources for chemists seeking information about chemical entities. For

each individual chemical compound, various types of information are associated. This

includes different types of identifiers (systematic names, trade names, registry numbers,

multilingual names), predicted physicochemical properties, and links to a wide variety of

experimental physical, chemical, and spectral data from a wide range of sources (http://www.

chemspider.com/DataSources.aspx). ChemSpider can therefore be considered as a structure-

based link farm to other resources. ChemSpider also provides an environment that allows

users to both cleanse and expand the data online. Users can annotate and curate the data,

http://www.cas.org/newsevents/connections/derivative.html
http://www.cas.org/newsevents/connections/derivative.html
http://www.chemspider.com/blog/cas-chemspider-connectivies-and-unintended-collaboration.html
http://www.chemspider.com/blog/cas-chemspider-connectivies-and-unintended-collaboration.html
http://www.chemspider.com/DataSources.aspx
http://www.chemspider.com/DataSources.aspx

B E A U T I F Y I N G D A T A I N T H E R E A L W O R L D 267

thereby removing erroneous associations with the chemical entities and adding their own

information, including links to external resources and other annotations of the data. Users

can also deposit new chemical structures to the database and associate spectral data,

images, and even video files. A myriad of search capabilities exist, including searching pre-

dicted data and structure or substructure-based searches.

ChemSpider therefore provides an ideal environment for connecting to other sources of

chemical information where the primary key to the data is the formal identity of the mol-

ecule. The combination of providing a central resource for searching for chemical data as

well as the deposition of user data makes ChemSpider the logical place through which

other researchers would find our data. Although some of the data associated with Chem-

Spider has been gathered by scraping data from online resources, great care must be taken

with such approaches (http://www.chemspider.com/blog/care-in-nomenclature-handling-and-

why-visual-inspection-will-remain.html), and increasingly data is added only after some form

of curation. At present the decision has been made to add specific measurements to

ChemSpider on a case-by-case basis to ensure a further human curation step.

The nonaqueous solubility data measured as a part of the ONS-Solubility project is being

added to ChemSpider. Currently a few values are available online as supplementary infor-

mation, presented along with all other physicochemical data that might be available for a

specific chemical compound. The solubility data is presented along with a link back to the

experimental page, which is consistent both with the ChemSpider approach of acting as a

link to the primary data source and our approach of providing a path to the data and then

on to the original record. An example ChemSpider record is shown in Figure 16-3. As

more nonaqueous solubility values are inserted into the record, either manually or roboti-

cally, this data will be exposed and its associated originating source information will be

just one click away.

As more data, albeit with differing levels of quality and curation, is made available in the

future, it can be expected that this data ingest process will be automated. Efforts are

already underway to facilitate this process for the current project, but two major issues

will need to be overcome before this process can become widespread. The primary issue is

one of trust: which sources of data can be trusted sufficiently to be automatically ingested,

and what level of curation should those data sources be expected to have? Is the current

level of curation on the primary GoogleDocs spreadsheet adequate, or would a further

level of filtering be required? In the current case it seems clear that our approach is not

adequate for a service that aims to provide data that chemists can trust without requiring

further investigation. As researchers expose more primary data and the interest in auto-

matically ingesting it grows, there will need to be a detailed discussion about when and

how data is presented, and what markup is required prior to being placed on a white list.

Certification processes can be expected to grow up around the exposure of data, providing

a mark of both quality and functionality for exposed data sets.

The second major issue is that of functionality. The number of exposed data sets that are

relevant to ChemSpider is currently small, and in most cases reasonably stable, and so

http://www.chemspider.com/blog/care-in-nomenclature-handling-and-why-visual-inspection-will-remain.html
http://www.chemspider.com/blog/care-in-nomenclature-handling-and-why-visual-inspection-will-remain.html

268 C H A P T E R S I X T E E N

manual ingest is practical though labor-intensive. As the numbers rise, such manual

processes will become impossible. The presentation of the data as an online spreadsheet is

convenient for the research group, but it does not necessarily directly map onto the schema

of ChemSpider, or of any other centralized aggregation service. ChemSpider is based on a

relational database running on Microsoft SQL Server. Physicochemical data, represented

in the standard web page view, is held in tables within the database. In a world with tens

of thousands of data providers creating heterogeneous data sets, a common language is

required to enable widespread aggregation and reuse of the data. There are many compet-

ing standards for describing chemical information. The most reliable approach will be to

develop a way of presenting the data that is as general as possible. Then, services can be

developed to translate between different descriptive standards.

F I G U R E 1 6 - 3 . This example ChemSpider entry shows the solubility value and link to the original data. (See Color Plate

55.)

B E A U T I F Y I N G D A T A I N T H E R E A L W O R L D 269

Enabling Data Integration via Unique Identifiers and Self-Describing
Data Formats

Although the GoogleDoc API provides an easy route toward developing analysis tools and

visualization methods that are designed specifically for this data set, it remains the case,

even with a unique identifier, that the presentation of the data is not in a standard format.

These tools are written against the data set as it is presented in the GoogleDoc spreadsheet.

In short, they require a human to understand what descriptors and values are in which

column of the spreadsheet. Although it is technically feasible to recognize that a given col-

umn contains a SMILES code, it will not be clear to a machine whether this is a solvent or

solute, or indeed that the data is about solubility at all. To realize the full promise of con-

nected data (e.g., by supporting automated ingest into ChemSpider and other services),

and to provide the data in the most general possible way to other researchers, it is neces-

sary to provide a representation that adheres to a recognized standard in syntax as well as

in descriptors.

The Resource Description Framework, or RDF, provides a route toward exposing the data

set in a recognized, machine-readable format. With this format, any information is trans-

formed into statements made up of a “subject,” a “predicate,” and a “value.” For example,

the fragment shown in the following code states that the object found in the spreadsheet

called solute#59 is defined as the resource at the given URL. RDF uses “namespaces,” or

sets of recognized concepts, to define relationships between “resources,” where a resource

is any object that can be pointed at by a unique identifier. There are four main namespaces

used here. The first is the RDF namespace itself, which defines that the file is in RDF and

provides other top-level concepts such as “is defined by” or “is a resource.” The second

namespace is the spreadsheet containing the data, which is a resource, defined here by the

namespace ons, which contains specific resources within it, one in each cell of the spread-

sheet. The third namespace is Dublin Core (dc), which deals with concepts such as name,

author, and version. A fourth namespace (chem), hosted at http://rdf.openmolecules.net (RON), is

used to specify that the molecules identified in a specific cell are defined by a specific resource.

As noted earlier, the spreadsheet has its own data schema, essentially relying on the fact that

each row refers to a single measurement. The GoogleDocs API makes it straightforward to

reference a cell using a simple URL. To make this into a declaration in RDF, we need to

describe a relationship between the contents of that cell, e.g., “2-octenoic acid” and some

other resource. One simple relationship is to identify “2-octenoic acid” as being defined by

a specific resource at RON, which again is referenced by a simple HTTP URL. As the con-

tents of the cell are now defined, it is possible to use the external resource to find more

information related to that molecule. Resolving the URL will lead to more RDF statements

about the same molecule, defined by the service at RON. Similarly, it gives the SMILES and a

title to the molecule, all derived from the spreadsheet. For each and every entry representing

a molecule in our data set, it is possible to define a standard description and to connect that

with other standard definitions, including systematic name, InChI, and SMILES.

http://rdf.openmolecules.net

270 C H A P T E R S I X T E E N

<ons:Solute rdf:about="http://spreadsheet.google.com/.../onto#solute59">
 <rdfs:isDefinedBy rdf:resource="http://rdf.openmolecules.net/?InChI=
1/C8H14O2/c1-2-3-4-5-6-7-8(9)10/h6-7H,2-5H2,1H3,(H,9,10)"/>
 <chem:inchi>InChI=1/C8H14O2/c1-2-3-4-5-6-7-8(9)10/h6-7H,2-5H2,1H3,
(H,9,10)</chem:inchi>
 <chem:smiles>CCCCCC=CC(=O)O</chem:smiles>
 <dc:title>2-octenoic acid</dc:title>
</ons:Solute>

Having defined each of the chemical entities found in the spreadsheet, we can now repre-

sent each measurement using a piece of RDF similar to that just shown. The RDF defines a

new measurement, and gives the solvent, solute, solubility, and the experiment to which

this measurement belongs. Again, because we have already defined the identity of each

solvent and solute in chemical terms, this measurement information can be linked in and

used with any other RDF file that describes data about the same molecule. The fragment

shown next uses the XML entity ons with the value http://spreadsheet.google.com/

plwwufp30hfq0udnEmRD1aQ/onto# essentially as an alias to make the XML more readable

(&ons;measurement179 is expanded to the full URL with “measurement179” appended):

<ons:Measurement RDF:about="&ons;measurement179">
 <ons:solubility>0.44244235315106</ons:solubility>
 <ons:solvent RDF:resource="&ons;solvent8"/>
 <ons:solute RDF:resource="&ons;solute26"/>
 <ons:experiment RDF:resource="&ons;experiment2"/>
</ons:Measurement>

These statements, or triples, can then be read or analyzed by any RDF engine and query

systems such as SPARQL. By using appropriate namespaces, especially where they are

agreed and shared, it is possible to generate datafiles that are essentially self-describing. A

parser has been developed (http://github.com/egonw/onssolubility/tree/) to generate the full

RDF document, available at http://github.com/egonw/onssolubility/tree/master/ons.solubility.

RDF/ons.RDF. The Chemistry Development Kit (CDK; see http://cdk.sourceforge.net/) is used

to derive molecular properties from the SMILES, including the InChI. This is a key step:

the conversion of experiment-specific information into a datafile that can be read by any

system or service that understands RDF. Such services may not necessarily know what to

do with specific concepts from new namespaces but will understand how to deal with the

categories these concepts fall into, and will be able to parse the data against other

resources that use the same namespace.

The real power of RDF arises when multiple resources are linked together via links (see

Figure 16-4). It is possible, for instance, to link our experimental data with information

in DBPedia, an online resource of information represented in RDF (http://dbpedia.org/).

DBPedia uses a namespace called the Simple Knowledge Organization System (SKOS; see

http://www.w3.org/TR/skos-primer/) to introduce concepts such as “category.” Within DBPedia

different solvents have been described as belonging to various categories, such as hydro-

carbons or ethers. By combining the RDF statements from our data with that from DBPe-

dia, it is possible to query our experimental data for examples of measurements done in

different solvent categories. This is possible because the resource at RON links specific con-

cepts (the identity of a molecule) to resources in both our data and DBPedia. This works

http://github.com/egonw/onssolubility/tree/
http://github.com/egonw/onssolubility/tree/master/ons.solubility.RDF/ons.RDF
http://github.com/egonw/onssolubility/tree/master/ons.solubility.RDF/ons.RDF
http://cdk.sourceforge.net/
http://dbpedia.org/
http://www.w3.org/TR/skos-primer/

B E A U T I F Y I N G D A T A I N T H E R E A L W O R L D 271

despite the fact that DBPedia might contain incorrect chemical names (as long as the

resource links to the object with the correct InChI), that our data contains no concept of

solvent category, and that DBPedia understands nothing about the ONS namespace.

Taking this one step further, we can link our experimental data into a wider discussion on

the Web by using RDF from RON to identify, for instance, which blogs have been discussing

a particular chemical compound. This RDF contains links to Chemical blogspace (http://cb.

openmolecules.net/) and shares the use of unique identifiers (in this case, the InChI is used

in URI form). The rdf.openmolecules.net resource links to a range of data sources, again

providing a way for data and analysis from multiple sources to be combined together. The

value of the RDF approach is that additional data sources can be added at any point on the

graph, without having to worry about how that information relates to that from other

data sources. Work can always go into making the integration better by choosing to share

more common vocabulary elements, but as long as a new data source has at least one

common identifier, then data integration can begin.

Closing the Loop: Visualizations to Suggest New Experiments
As noted earlier, data from experiments can be utilized in a variety of ways, ranging from

visualization to modeling. These activities are useful and can provide insight into the phys-

ical problem at hand. However, our main aim is to use the modeling and analysis to

inform the design of new experiments. As the crowdsourcing effort expands, it is impor-

tant to consider possible experiments and prioritize these, particularly if the ultimate aim

is to enable interested, but not necessarily experienced, researchers to take part. Such

computational prioritization is very useful in many scenarios, where resources (financial,

F I G U R E 1 6 - 4 . Connecting solubility measurements with the wider data web via RDF. RON is http://rdf.openmolecules.

net, the resource that connects records from DBPedia, Chemical Blogspace, and ChEBI (a European Bioinformatics

Institute Chemistry resource).

Solubility

InChl ChEBl lD

InChl

InChl

R.O.N

ChEBl

DBPedia

Chemical
blogspace

http://cb.openmolecules.net/
http://cb.openmolecules.net/

272 C H A P T E R S I X T E E N

material, time) are limited and all possible experiments cannot be carried out. In the case

of solubility, an experimentalist might ask, “Given the compounds tested so far, which

ones should we do next?” Visualization of the data can be both compelling and provide a

good guide to the best choice of the next experiment given the resources available. This

enables a cyclical relationship between experiment and computation, making optimal use

of both the experimentalist’s and analyst’s skills.

To identify which compounds we, or anyone else, should test next, we need a way of

understanding where in a “chemical space” each of the compounds we have already tested

lie. Then it will be possible to identify empty parts of that space in our data set, correlate

that with specific molecules that lie in those spaces, and carry out those experiments. This

requires the integration of information that is not found in our data. We have the identity

of compounds and solvent as well as the solubility, but we do not know the characteristics

of the molecules, i.e., their position in our chemical space. To obtain this information, we

need to create a “mashup” of chemical data using a variety of services. We have provided

a simple REST-based interface to CDK (Steinbeck 2006) descriptors. A URL of the form

http://www.chembiogrid.org/cheminfo/rest/desc/descriptors/c1ccccc1COCC retrieves an XML docu-

ment that contains multiple URLs, each one pointing to an XML document containing the

value of the specific descriptor. The chemical space characteristics used in the visualiza-

tions shown here are the compound molecular weight (MW), predicted hydrophobicity

(ALogP, a measure of the preference of the compound for water or oil solvents), and the

calculated molecular surface area (TPSA). Many more descriptors are provided via the

web service.

As all the services and data are provided on the open Web, it is possible for third parties to

utilize these to prepare visualizations. Using the data in the GoogleDoc and the web ser-

vices provided at Indiana, a visualization tool was independently developed that enables a

multidimensional visualization of the solubilities of all compounds in a specific solvent

(http://oru.edu/cccda/sl/descriptorspace/ds.php). In Figure 16-5, the X and Y axes display a spe-

cific molecular descriptor, the color identifies the type of compound, and the size or shape

of each point shows the solubility. In addition, hovering over each point activates a tooltip

giving further details, including structure and solubility. The figure shows clear areas of

the chemical space that are not occupied by currently available data points (the bottom

left of panel A, for instance). In principle, further services could be configured to suggest

compounds that lie in those areas by querying data sources such as ChemSpider.

To expand the ability to display multiple dimensions, further visualizations were prepared

in the 3-D environment of Second Life (http://www.secondlife.com; Figure 16-6). As with

GoogleDocs, Second Life may seem an odd choice for a scientific visualization environ-

ment. However, once again it satisfies many of the criteria that we have applied to other

parts of our project. It provides a (relatively) simple environment for the user in a generic

package that is available free of charge. It therefore reduces barriers compared to other

specially developed and often complex and expensive visualization environments. From

the perspective of the visualization experience, Second Life also offers many advantages. It

is possible to move around the graph, to zoom in and out, and even to walk inside and

http://www.chembiogrid.org/cheminfo/rest/desc/descriptors/c1ccccc1COCC
http://oru.edu/cccda/sl/descriptorspace/ds.php
http://www.secondlife.com

B E A U T I F Y I N G D A T A I N T H E R E A L W O R L D 273

examine the graph from that perspective. Multiple users can also simultaneously view and

manipulate the same graph. From the developer’s perspective, Second Life provides the

ability to bring in data from the outside Web, enabling the use of the web services

described earlier, and provides a clickable interface for the user to manipulate the graph or

to follow links from the data points to data source and experiments. In a theoretical sense

it might be preferable to use an open source rendering system that worked entirely within

a web browser, but open source systems are limited and no other system offers the combi-

nation of technical ability, simplicity of interface, and usability of Second Life. In a very

real sense, these compelling visualizations speak for themselves.

It is clear that easy access to data allows computational scientists to perform a variety of

analyses, but the close integration of experiment and computation allows the overall

investigation to be much more efficient. Although many computational analyses require

significant manual input and cannot be converted to an automated online service, many

are simple enough to be converted to a service that can be incorporated into a variety of

platforms. The result is that it is significantly easier to analyze and manipulate the data to

F I G U R E 1 6 - 5 . Graphical representation of solubility data in chemical space. Panels A and B show two visualizations of the

same data plotted onto axes representing different chemical characteristics. The color of the spots represents the chemical type

(red for aldehyde, blue for carboxylic acid, yellow for amine, and black for other) and the size the solubility. Panel C illustrates

the clickable interface showing the chemical structure and value of the solubility for one data point. (See Color Plate 56.)

274 C H A P T E R S I X T E E N

suggest new directions for experiments, as well as develop novel applications, by mash-

ing together data and applications. These mashups demonstrate the power of using well-

recognized and easily convertible, machine-readable identifiers. The SMILES code in this

case is the key identifier that can be used to obtain further data from other web services,

data sources, or data from experiments exposed by other researchers. In the future, the

use of RDF to describe the results has immense promise in allowing automated integra-

tion. As RDF provides a self-describing framework based on agreed dictionaries, it is possi-

ble to search for data services that provide the desired information without any prior

knowledge of where they are or what their internal data schema is. Most current mashups

work by using a single common key (geographical location, search term, date) on known

services with a known schema. The promise of an open data web where the links between

objects are self-describing is that anyone will have the ability to create arbitrary mashups

in which the search for data and information sources is an integral part of the process.

Building a Data Web from Open Data and Free Services
A large part of the art of performing and communicating science is in designing processes

that remove inaccurate or misleading results, to provide a body of evidence that clearly

supports a simplifying explanation that humans can understand. Science can be seen as

the process of reducing pieces of the world into intelligible models. Part of the problem of

this approach is the tendency to oversimplify to either strengthen an argument or, in the

case of very complex systems, just to make it comprehensible.

F I G U R E 1 6 - 6 . Representing multidimensional data using Second Life. Three chemical descriptors are represented on

the three spatial axes. The color of the balls indicates the type of chemical entity (as defined in the previous figure), and

the size shows the solubility in the current solvent. The visualization is available at http://slurl.com/secondlife/Drexel/

165/178/24 on Drexel Island, Second Life. (See Color Plate 57.)

B E A U T I F Y I N G D A T A I N T H E R E A L W O R L D 275

Our approach is to embrace the complexity of real measurements by making all the detail

available. We aim to balance the issues that this complexity creates with the need for clear

and useful data sets by filtering the primary record in as transparent a way as possible to

create the primary data set. The availability of storage space on the Web at near zero cost

and the wide availability of high-quality, freely hosted services makes it possible to host

the whole of the research record in the public view. There is simply no longer any excuse

for writing “data not shown.” But the desire to provide access to the full record creates

new problems.

The first of these is simply volume. The research record itself tends to be a large body of

largely unstructured text and images. Widespread standards do not exist to represent this

type of information in a way that is easily parsed by either humans or machines. Summa-

ries and filtering are required to make available the information contained in the record.

We chose to use a GoogleDocs spreadsheet as the primary source of extracted data. The

process of extracting data from the record remains subjective and manual for the moment.

The spreadsheet provides a natural interface for humans, and in particular experimental

scientists, while also providing a range of effective interface options for web services to

reprocess and represent the data.

It is possible to imagine scraping data directly from the experimental report. With a small

amount of informal formatting and regular expression analysis and conversion of a feed

generated from the record, it would be possible to automatically populate the spreadsheet.

We have not pursued this, because we wish to include a human filtering process at this

stage. As the project increases in size, this will become untenable at some scale. The

choices about what scale will depend on the project, the type of data, and the need or

desire for precision and accuracy in the presented data set.

Once the data is made public it is open for use by any interested researcher, and the Google-

Doc API makes it possible to exploit the data for a wide range of services. This can include

visualization or analysis services. These services will be dependent on understanding how

the data is structured within the spreadsheet. This means they will generally be written

against the specific data set. However, even in this case it is straightforward to leverage a

wide range of services, data sources, and visualization tools to create highly effective data

displays, ranging from tables and simple graphs to clickable interfaces in five, seven, or

more dimensions. Open standards and open systems provide the ability to move data and

information to the places where it can be most effectively used. The promise of truly open

and self-describing data formats is immense but unrealized, even in data-driven sciences

such as chemistry, due to both technical and social difficulties in translating from records

in the form that experimentalists understand to properly structured machine-readable forms

as understood by computers and the people who code on them. Here we have shown the

ability to convert data in the form of a spreadsheet (something that experimentalists are

familiar and comfortable with) to RDF, but other formats could be served just as easily.

276 C H A P T E R S I X T E E N

The provision of such general data formats makes it possible to create services that inte-

grate data from multiple sources. A wide range of data sources containing information on

solubility, or perhaps other information in our data set, could be integrated and analyzed

together. This will make it possible for aggregation and link farm services, such as Chem-

Spider and others, not just to automatically aggregate data, something that is already tech-

nically feasible, but to make educated decisions about the level of curation required by

data from different sources, and to deploy human curation where it is most needed. This

centralization, in turn, provides a valuable indexing service, providing a central location

online where users can find sources for the data they are looking for.

One of the central themes of all the work described here is the use of free hosted systems

that provide enough functionality without overburdening the user with complexity. For

most of the recording, aggregating, analysis, visualization, and presentation steps, there

are more advanced, more general, or more sophisticated tools available. To record the

research, we could have used a commercial Electronic Laboratory Notebook or a specially

designed online system; instead, we used a freely hosted wiki service. The presentation of

the primary data could have used a database backend with a content management system

to provide sophisticated visualizations; we used an online spreadsheet and its API with

some JavaScript to present a range of visualizations. There are many highly functional and

sophisticated 3-D viewing environments available; we used Second Life.

Part of the rationale for this is cost. All the services we used are free at point of access,

allowing an essentially unmanaged development process to grow and attract new collabo-

rators with low barriers to their entry. However, a significant part of the rationale is to use

services that are fit for purpose without being overly sophisticated. Forging an effective

link between experimentalists and analytical and theoretical scientists is always a chal-

lenge. The use of the spreadsheet as a source of data that can be automatically or manually

converted to well-described formats (a formal relational database), or self-describing and

extensible formats (RDF), or simply readily transformed directly into sophisticated visual-

izations, illustrates the use of the spreadsheet as a meeting point. Experimental scientists

like and understand spreadsheets. Computational scientists may prefer either text files

over which code can be run, databases, or formats such as XML and RDF. Key to bringing

these communities together will be the ability to convert backward and forward into pre-

ferred formats in a fully automated fashion.

Finally, the key to the whole project is trust and transparency. As a record is converted

into data, and data is converted into information, and finally as information is converted

into a model or theory, context is lost at every stage. The details, which are often messy,

get left behind so that the bigger picture can emerge. This is entirely appropriate. Science

is the process of summarizing observations in a way that allows us to predict what will

happen in the future. As with our choice of services, a scientific model or theory is useful

if it is good enough to save us the time of doing the experiments most of the time. Tradi-

tionally, however, this summarizing process has come at the price of losing access to the

detail. In the world of the Web, where storage is cheap, this no longer needs to be the

B E A U T I F Y I N G D A T A I N T H E R E A L W O R L D 277

case. Now the choice lies in how to present the underlying detail, what filters to apply in

the summarizing process, and how to retain the links between the summaries and the

original records.

These are not easy decisions, and we would not claim to have got all of them right. None-

theless, we believe this project can act as an exemplar of the approach. Over the course of

four months, a project that started as a discussion between two people on a train has

grown into a multinational data collection, visualization, and modeling effort where all

participants have access to all of the data and analysis in real time. The collaboration can

easily grow as new researchers become interested. Our open data and open services have

enabled the creation of compelling new visualizations without requiring any direct

involvement from the experimentalists themselves. These visualizations are both useful to

the experimentalists and strikingly beautiful in their own right. Yet they represent only a

small proportion of what could be done, by anyone, with the data we have exposed. At

the same time they always provide a link back to the original record, with all its blemishes

and weaknesses, allowing any user to assess the validity and strength of any specific data

point at the resolution she chooses.

Beauty is often seen as being related to simplicity or symmetry, a sense that the whole can

be described using a simple mathematical description. This is rarely the case with real

experimental data. The beauty that lies, sometimes hidden, within experimental data may

take extensive filtering to reveal. But, if the true beauty lies in understanding, as far as we

can, what is really happening at the deepest possible level in the world around us, then we

can uncover only a limited amount of that beauty through any given analysis. By provid-

ing access to as much of the record as we can, we make it possible for other researchers to

discover and reveal more of the beauty that is hidden beneath the surface.

Acknowledgments
The authors would like to acknowledge the efforts of the researchers who collected the

majority of the data, Khalid Mirza, Jennifer Hale, and Tim Bohinski; Bill Hooker for assist-

ing with judging of the Open Notebook Science Challenge; and the financial and in-kind

support of Submeta and Nature Publishing Group.

References
Bradley, Jean-Claude. 2007. “Open Notebook Science Using Blogs and Wikis.” Available

from Nature Precedings, http://dx.doi.org/10.1038/npre.2007.39.1.

Bradley, Jean-Claude et al. 2008. “Optimization of the Ugi reaction using parallel synthe-

sis and automated liquid handling.” Journal of Visualized Experiments, http://dx.doi.org/10.

3791/942.

Steinbeck, C. et al. 2006. Current Pharmaceutical Design, 12, 2110–2120.

http://dx.doi.org/10.1038/npre.2007.39.1
http://dx.doi.org/10.3791/942
http://dx.doi.org/10.3791/942

279

Chapter 17 C H A P T E R S E V E N T E E N

Superficial Data Analysis: Exploring
Millions of Social Stereotypes

Brendan O’Connor and Lukas Biewald

Introduction
HOW DO WE PERCEIVE AGE, GENDER, INTELLIGENCE, AND ATTRACTIVENESS? WHAT INSIGHT CAN WE

extract from millions of anonymous opinions?

Last year we, with Chris Van Pelt, built the website FaceStat.com, where users can upload

their own photos, as well as look at and judge photos of other people (see Figure 17-1).

The site became surprisingly popular. More than 100,000 brave users have uploaded pic-

tures of themselves, friends, relatives, enemies, etc., and more than 10 million judgments

have been collected for preselected questions such as:

• How old do I look?

• Do you think I look smart?

• Do you think I could win a fight with a medium-size dog?

• Describe me in one word.

We like to call it “multivariate Hot-or-Not.”

http://FaceStat.com

280 C H A P T E R S E V E N T E E N

Researchers in psychology and sociology have extensively studied stereotypes and how

our appearances influence the way we are perceived. But no one has had access to such a

large pool of data from such a diverse group of people. This data is much messier than a

typical lab experiment, but can volume make up for a lack of control? In fact, real-world

data might be most revealing: someone who thinks she’s playing a game could be more

honest than a college sophomore taking a survey in his Psych 101 course.

We love exploring big data sets. Rather than confirm prebaked hypotheses, we’ll search

for interesting patterns and correlations. We won’t try to hide or gloss over the messy out-

liers and missing values; instead, we’ll show you explicitly the choices we’re forced to

make. We will refrain from drawing grand or controversial conclusions about stereotyping

and let the data speak for itself.

Preprocessing the Data
We’ll start from the beginning: like many websites, FaceStat runs on an SQL database. The

judgment interface takes user judgments and saves them as a set of (face ID, attribute,

judgment) triples. The first thing we do is extract those 10 million rows from the database.

This gives us a file that looks like:

face_id key value
149777 describe serious
18717 trustworthy 3
140467 attractive 2
149777 describe five-head
...

F I G U R E 1 7 - 1 . The FaceStat judging interface. (See Color Plate 58.)

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 281

We’re interested in exploring the relationships between different types of perceived

attributes. One interesting question is, “How old do I look?” The very first thing to do is to

look at the responses that people have given. Unix command-line tools make it easy to

quickly see a histogram of responses. The most common responses look like reasonable

ages, but we also see a problem:

Look at $ cat data.tsv |
age judgments’ grep "age" |
values cut -f3 |
and count how many times sort |
each value occurs, uniq -c |
and order by this count. sort –nr

Here’s the output of this shell pipeline. For each line, the first number is the frequency

count. The second string is the response value—exactly what the user typed in the web

form in response to the question How old do I look? Most often, she typed in a number, but

there are some issues:

70472 19
70021 22
69387 18
68423 17
...
27 24\r\n
27 17\r\n
23 01
21 16\r\n
...
1 old enough to know better
1 hopefully over 21
1 e
1 ??
...

FaceStat has existed for eight months and undergone many changes, so data has been

collected under different circumstances. Some weird web browsers seem to add the

whitespace control codes \r\n. At some point there was a bug and users slipped in textual

responses and other problematic data. Looking at rare values from the bottom of the sort |

uniq -c | sort -nr histogram is an easy way to reveal data bugs, since they often manifest

as outliers. We have to write some regular expressions that can clean out bad values like

this.

It would be tedious to go into detail about all of the sanity checks and data cleanup, but

they are a crucial first step for any data analysis. With any human-generated data set,

there’s bound to be messy outliers. For example, we found one person who figured out a

way to circumvent the randomness in the selection of which face to judge, and labeled

one face “mr. cool” hundreds of times.

Besides cleanup, some critical decisions to make for this particular data set are: (1) how to

map from multiple-choice responses such as “very trustworthy” versus “not to be trusted”

to a numerical value, and (2) how to aggregate results from multiple people into a single

282 C H A P T E R S E V E N T E E N

description of a face. Every face has some 100 judgments among several different

attributes. We’ll simply average the numeric judgments. (Under this paradigm, we ignore

textual judgments; we’ll get to those later.) So each face has an average perceived age,

perceived intelligence, etc. Using SQL and Python scripts, we eventually end up with a file

with one row per face. It looks something like Table 17-1.

In all, there are tens of thousands of faces with about 20 different attributes. There are

many missing values: different questions were asked of different people. With those cave-

ats in mind, we’re ready to load the data into a package for more detailed analysis. If you

want to follow along, we’ve made a subset of the data and useful code available at http://

data.doloreslabs.com.

Exploring the Data
There are many great tools for data analysis. Some of the most commonly used are com-

pared in Table 17-2.

T A B L E 1 7 - 1 . Per-face data

male age intelligence attractive poli_affil

TRUE 24.26667 NA 2.800000 NA

TRUE 47.00000 3.400000 2.120000 3.2

TRUE 29.27273 2.700000 2.083333 1.8

FALSE 17.63636 3.111111 2.428571 NA

FALSE 19.58333 NA 2.750000 NA

TRUE 22.80953 NA 2.250000 NA

TRUE 29.77778 1.833333 1.900000 NA

FALSE 18.16667 NA 2.571429 NA

TRUE 46.60000 3.200000 2.120000 3.4

TRUE 52.06667 3.000000 2.080000 NA

T A B L E 1 7 - 2 . Comparison of data analysis packages

Name Advantages Disadvantages Open source?
Typical
users

R Library support; visualization Steep learning curve Yes Statistics

Matlab Elegant matrix support; visualization Expensive; incomplete statistics
support

No Engineering

SciPy/NumPy/
Matplotlib

Python: flexible and general-purpose
programming language

Components poorly integrated Yes Engineering

Excel Easy; visual; flexible Large data sets; weak numeric
and programming support

No Business

SAS Very large data sets Very baroque; hardest to learn No Business

SPSS, Stata Easy statistical analysis Inflexible No Science (bio
and social)

http://data.doloreslabs.com
http://data.doloreslabs.com

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 283

We like to use R, which is an open source statistical and visualization programming envi-

ronment with a vibrant and growing development community. It’s emerged as a de facto

standard among statisticians. For exploratory data analysis, we prefer it to the other

options because of its graphing libraries, convenient indexing notation, and an amazing

array of statistically sophisticated, community-maintained packages. You can read about it

and download it at http://www.r-project.org; also look at the references at the end of this

chapter.

R provides many excellent tools for looking at what’s in the data. From its interactive

interpreter:

Load the data > data = read.delim("http://data.doloreslabs.com/face_scores.tsv", sep="\t")
and plot. > plot(data)

Given a basic table of records, R’s default plotting action is to give us a scatterplot matrix of

every pair of variables. (See Figure 17-2.) One thing that jumps out is that the age correla-

tions look funny—the rightmost column and bottommost row.

F I G U R E 1 7 - 2 . Initial scatterplot matrix of the face data.

http://www.r-project.org

284 C H A P T E R S E V E N T E E N

We need to investigate. The first thing to do is look at the distribution of age values. (See

Figure 17-3.)

> hist(data$age)

This doesn’t look right. The x-axis has been scaled all the way up to 70 million because of

outliers. Let’s look at the records with outlying age values:

Select records with age greater than 100. > data[which(data$age > 100),]

 id num_judgments age male attractive intelligence
40623 150 402.3333 TRUE 2.416667 NA
57021 133 47882.3010 TRUE NA NA
66441 197 66666692.0000 TRUE NA NA

Earlier, we cleaned out the non-numeric age values, but we didn’t check for absurdly high

values. For now the easiest thing to do is just remove these outliers. If you haven’t used a

data analysis language before, notice how R’s rich subscripting notation makes basic

exploration and cleaning easy and fun:

Subselect rows with age less than 100. > clean_data = data[which(data$age < 100),]

We check the histogram again—Figure 17-4—and find out that most of our users are (or

appear to be) between 18 and 30, which seems reasonable.

F I G U R E 1 7 - 3 . Initial histogram of face age data.

Fr
eq

ue
nc

y

data$age

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

Histogram of data$age

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 285

Age, Attractiveness, and Gender
We want to zoom in on interactions of some of the most interesting perceived attributes:

age, gender, and attractiveness. Whenever we have a table with a few interesting col-

umns, it’s straightforward and often informative to throw it up as a scatterplot (see

Figure 17-5):

Draw a scatterplot of age vs. attractiveness, > plot(dage, dattractive,
using gender to define the points’ colors. col = ifelse(d$male, 'blue', 'deeppink'))

This plot is suggestive; for example, women seem to be more attractive than men. But it’s

hard to tell anything for sure, since tens of thousands of points are being drawn over one

another. When there is an overload of data, scatterplots can be misleading. One way to deal

with this is to smooth the data, by plotting an estimated distribution rather than the points

themselves (see Figure 17-6). We use a standard technique called kernel density estimation:

Lay out side-by-side plots. > par(mfrow=c(1,2))
For males and females, > dm = d[d$male,]; df = d[d$female,]
draw smoothed plots, > smoothScatter(dfage, dfattractive,
with a color gradient, colramp = colorRampPalette(c("white", "deeppink")),
and aligned axes. ylim=c(0,4))
 > smoothScatter(dmage, dmattractive,
 colramp = colorRampPalette(c("white", "blue")),
 ylim=c(0,4))

F I G U R E 1 7 - 4 . Histogram of cleaned face age data.

Fr
eq

ue
nc

y

clean_data$age

0 20 40 60 80

0

500

1,000

1,500

2,000

Histogram of clean_data$age

286 C H A P T E R S E V E N T E E N

We can even try putting them on the same plot (see Figure 17-7):

> smoothScatterMult(dage, dattractive, d$male, blendFun=bl_burn, colramps =
c(colorRampPalette(c("white", "red")), colorRampPalette(c("white", "blue")),
colorRampPalette(c("white", "green"))), pch="", nrpoints=10000)

F I G U R E 1 7 - 5 . Scatterplot of attractiveness versus age, colored by gender. (See Color Plate 59.)

F I G U R E 1 7 - 6 . Smoothed scatterplots for attractiveness versus age, one plot per gender. (See Color Plate 60.)

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 287

These graphs show the full distribution of the data, but it’s hard to see patterns. For exam-

ple, how does age affect attractiveness? It’s easier to see this by computing summary statis-

tics and plotting them. (See Figure 17-8a.)

For males > dm = d[which(d$male),]
and females, > df = d[which(d$female),]
average across faces > male_avg_by_year = by(dm$attractive,
within bins cut(dm$age, breaks=0:80), mean)
(one per year) > female_avg_by_year = by(df$attractive,
then cut(df$age, breaks=0:80), mean)
plot them > plot(male_avg_by_year, col='blue')
all together. > points(female_avg_by_year, col='deeppink')

This graph starts to tell a story, but it’s still a bit hard to read. Some of the points are aver-

ages from thousands of faces, whereas some of the more elderly points come from just a

handful of observations. Therefore, there’s more noise on the right since the samples are

smaller.

We’ll add two new features to the plot (see Figure 17-8b). First, we compute 95% confi-

dence intervals to make sure we’re not fooling ourselves into seeing patterns from noise.

Confidence intervals are a way to estimate a range of possible means with the limited data

we have. Second, we’ll fit a loess curve to help visualize aggregate patterns in this noisy

sequential data. Ordinarily, we might fit a linear regression to the data, but this data isn’t

linear, and doesn’t look like any function we know of. A loess function (“locally weighted

regression”) is a way to fit an arbitrary curve to data. It’s basically a fancier moving average.

F I G U R E 1 7 - 7 . Smoothed scatterplots for attractiveness versus age, colored by gender and overlaid on one plot. (See

Color Plate 61.)

288 C H A P T E R S E V E N T E E N

This graph still isn’t perfect. There are a number of points around the edges with just one

or two samples where it’s impossible to compute confidence intervals. This is not surpris-

ing if you look back at that age histogram in Figure 17-4—people who appear to be over

50 make up only 1.7% of the data set. Furthermore, many intervals are so big that the

data points they represent aren’t that meaningful. So, for the areas where we have fewer

data points—the very young and the old—we use larger 5- and 10-year buckets. This

graph looks far less noisy (see Figure 17-8c).

Women are generally judged as more attractive than men across all ages except babies.

Babies are found to be most attractive, but the attractiveness drops until around age 18

(perhaps users are uncomfortable judging adolescents as “attractive”?), after which it rises

and peaks around age 27. After that, attractiveness drops until around age 50, at which

point it seems to increase again. But it’s hard to say for sure, since the data is very sparse

among people perceived to be older than 50.

Of course, among the 20 or so nontextual attributes, there are many more relationships to

explore. We could make many more plots similar to Figure 17-8, but could we view all

interesting interactions at once? Let’s stay with the approach of looking at pairwise interac-

tions and make a variant of the pairs plot from earlier. Instead of trying to show a scatterplot

in every panel, we instead show a single color indicating the overall correlation between the

attributes. Blue is a positive correlation, and red is a negative one (see Figure 17-9).

First compute pairwise correlations, > cors = cor(d, use='pair')
and order the attributes to try to > ord = order.hclust(cors)
put similar attributes next to each other. > cors = cors[ord,ord]
Plot the correlation matrix, > image(cors, col=col.corrgram(7))
with axis labels. > axis(1, at=seq(0,1, length=nrow(cors)),
 labels=row.names(cors))

F I G U R E 1 7 - 8 . Three iterations of plotting attractiveness versus age versus gender: (a) ages averaged within buckets

per age year, (b) 95% confidence interval for each bucket, plus loess curves, and (c) larger buckets where the data is

sparser. (See Color Plate 62.)

Age
0 20 40 60 80

Le
ss

 A
ttr

ac
tiv

e
M

or
e

At
tr

ac
tiv

e

Age
0 20 40 60 80

Age
0 20 40 60 80

Male
Female

a b c

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 289

F I G U R E 1 7 - 9 . Pearson correlation matrix; attribute pairs with blue squares and upward sloped lines are positively

correlated, while pairs with red squares and downward sloped lines are anticorrelated. (See Color Plate 63.)

Text of questions
• dress_size: What is my dress size?
• security: If you were an airport security guard, would you search me?
• outfit: Do you like my outfit?
• rehab: Will I end up in rehab?
• haircut: Do you like my hairstyle?
• age: How old am I?
• weight: How much do I weigh?
• political_affiliation: What is my political affiliation?
 (Higher is more conservative)
• plastic_surgery: Have I had plastic surgery?
• sexual_orientation: What is my sexual orientation?
 (Higher is more gay)
• attractive: How attractive am I?
• wealth: How wealthy am I?
• age_well: Will/Have I age(d) well?
• talented: Am I talented?
• intelligence: How smart am I?
• trustworthy: How trustworthy am I?
• dogfight: Do you think I would win a fight with a medium sized dog?
• hire: Would you hire me?
• intoxicated: How intoxicated am I?

intoxicated
hire

dogfight
trustworthy
intelligence

talented
age_well

wealth
attractive

sex_o
plastic

politics
weight

age
male

haircut
rehab
outfit

security
dress_size

d
re

ss
_s

iz
e

se
cu

ri
ty

ou
tf

it
re

ha
b

ha
ir

cu
t

m
al

e
ag

e
w

ei
gh

t
p

ol
it

ic
s

p
la

st
ic

se
x_

o
at

tr
ac

ti
ve

w
ea

lt
h

ag
e_

w
el

l
ta

le
nt

ed
in

te
ll

ig
en

ce
tr

us
tw

or
th

y
d

og
fi

gh
t

hi
re

in
to

xi
ca

te
d

+1

0

–1

290 C H A P T E R S E V E N T E E N

This plot is rich with interesting correlations that could warrant further investigation:

• Women are judged as more intelligent than men.

• Women are judged more likely to win a dogfight.

• Dress size is only weakly correlated with weight.

• Women are more likely to be hired as security guards.

• People who look like they have had plastic surgery are less likely to be hired as security

guards.

• Trustworthiness, intelligence, talent, aging well, wealth, and conservativeness all corre-

late with one another. An “axis of responsibility”?

Looking at Tags
In addition to all this ordinal and numeric data, we have a set of free-form tags that users

are able enter about a person’s picture. The tags range from descriptive (“freckles”,

“nosering”) to crass (“takemetobed”, “dirtypits”) to friendly (“you.look.good.in.red”) to

advice (“cutyourhair”, “avoidsun”) to editorial (“awwdorable!!!!!”, “EnoughUploadsNancy”)

to mean (“Thefatfriend”) to nonsensical (”...”, “plokmnjiuhbygvtfcrdxeszwaq”). In gen-

eral, free-text data is more complicated to process.

The first thing to do is examine the distribution of the tags. What’s the most common tag?

Load our tags > face_tags = read.delim("face_tags.tsv",sep="\t",as.is=T)
then count > counts = table(face_tags$tag)
and rank them. > sorted_counts = sort(counts, decreasing=T)
Show the most common tags. > sorted_counts[1:20]

The following table contains the output.

What are the least common tags?

Show the least common tags. > tail(sorted_count, 20)

cute pretty happy nice fun young

81333 40954 36263 33221 30622 27900

sweet friendly cool weird hot gay

20362 14895 14709 12731 12662 12409

Cute funny scary sexy old goofy

12132 11508 11445 11287 10958 10511

emo shy

10292 10207

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 291

Glancing at a few of the tags raises questions about normalization. Should “cute” and

“Cute” be merged into the same tag? Should punctuation be dropped entirely? Should

that funny-looking full-width question mark for Asian languages be considered the same

as the standard ASCII question mark? Clearly, it depends on the application. Whenever

possible, our instinct is to err on the side of caution and leave the original data intact. This

preserves information; for example, the tags “hot” and “HOT!!!” certainly have different

semantic content. It’s always easier to carefully merge data when necessary for a specific

visualization or analysis, rather than try to guess ahead of time what all the requirements

are and be forced to undo earlier normalization decisions.

A basic plot of a tag distribution looks at frequency of a tag against its frequency rank. Typ-

ically, when counting words or other lexical items, we see a quick drop-off from the most

frequent words to less frequent words. In our data, there are 290,000 unique tags out of 2.4

million total. The top 1,000 unique tags have 1.4 million occurrences—more than half the

total mass of tags. And just among those, there’s a sharp fall-off. From our table of com-

mon tags, we see that the most common tag, “cute”, has 36,000 occurrences, but the sec-

ond most common, “pretty”, has just half of that. (See Figure 17-10.)

For the top 1,000 tags, > s = sorted_counts[1:1000]
draw a plot of their counts. > barplot(s)

In 1935, the linguist George Zipf observed that word frequency distributions often follow a

“power law,” where the frequency of the nth word is proportional to (1/ns), where s is a

constant. Unlike a Gaussian distribution, this distribution has infinite variance, which can

make it somewhat unwieldy for certain statistical algorithms. Popular books such as Nassim

Nicholas Taleb’s The Black Swan (Random House) and Chris Anderson’s The Long Tail (Hype-

rion) have made these distributions famous as “fat tail” and “long tail” distributions,

respectively. Indeed, our data has quite a long tail: 220,000 words, or 76% of the vocabu-

lary, occur only once.

Красивая!

überdude übersöt ünsall

1 1 1

1 1 1

—— ——;

1 1

?

1

1 1 1

1 1 1

ешкув сшеет херня

1 1 1

1 1 1

ýour.nose.is.sexymamama!!

haiir!!

ダースベイダー

292 C H A P T E R S E V E N T E E N

We can check to see whether we have a power-law distribution by plotting our word fre-

quencies in log space (see Figure 17-11):

Plot log ranks > log_ranks = log(1:length(sorted_counts))
against log frequency. > plot(log_ranks, log(sorted_counts))

F I G U R E 1 7 - 1 0 . Tag frequencies for top 1,000 tags.

F I G U R E 1 7 - 1 1 . Tags’ log frequencies by log rank, with fitted line from the power law model.

Frequency of tag vs. Rank for the top 1000 tags

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

80,000

60,000

40,000

20,000

0

Tags ordered by rank

cu
te

sh
y

cr
ee

p
y

go
rg

eo
us

st
ra

ng
e

fr
ie

nd
ly

sa
ss

y
d

ul
l

d
ir

ty
la

zy
ro

ck
er

m
om

m
y

fr
ea

ky
su

rp
ri

se
d

fr
es

h
hi

p
p

y
w

as
te

d
id

io
t

p
la

st
ic

sc
ru

ff
y

b
us

y
so

ft
ea

rt
hy

sh
al

lo
w

p
un

k
p

sy
ch

o
m

ex
ic

an
p

la
ya

na
tu

ra
l

p
oo

r
b

al
d

in
g

re
sp

on
si

b
le 4

b
ut

ch
go

od
lo

ok
in

g
p

ro
m

b
ri

gh
t

b
lu

ry
ad

ve
nt

ur
ou

s
as

sh
ol

e
re

b
el

li
ou

s
ha

rd
st

uc
k-

up
ti

ny
-w

an
g

ha
ir

cu
t

in
d

ep
en

d
en

t
ch

in
it

al
ia

n
su

p
er

cu
te

se
lf

is
h

p
en

si
ve

d
el

ic
io

us

Fr
eq

ue
nc

y
of

 u
se

10,000

1,000

100

cute happy sexy ew dull hip Gothic
Tags ordered by rank

Log frequency vs. log rank

Sloot cops chiiin

10

1

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 293

 A power-law distribution should look linear in the log-log space:

Fit a model of log count against log rank > model = lm(log(sorted_counts) ~ log_ranks)
and draw it on Figure 17-10. > abline(model)

We find our tags’ frequencies are fairly close to a (1/n.80) distribution. (If you don’t think it

looks like the best-fit line, keep in mind that 76% of all the points are on that last bottom-

right ledge of the data.)

If you do this log-log frequency plot on any sort of text—newspapers, novels, web pages,

etc.—it looks similar.* Perhaps unsurprisingly, when FaceStat users write description tags,

they’re engaging in a linguistic behavior that has some fundamental similarities to other

types of human communication.

How do the tags fit in with the rest of our data? A first pass is to randomly sample from the

tags and overlay them on plots that we’ve already generated. (See Figure 17-12.)

* Zipf, George. 1935. The Psychobiology of Language (MIT Press). See also http://en.wikipedia.org/wiki/
Zipf’s_law.

F I G U R E 1 7 - 1 2 . Tag sample plotted on a smoothed attractiveness versus age scatterplot. (See Color Plate 64.)

http://en.wikipedia.org/wiki/Zipf�s_law
http://en.wikipedia.org/wiki/Zipf�s_law

294 C H A P T E R S E V E N T E E N

Here the darkness of the plot shows the density in the overall distribution of Political Affil-

iation versus Attractiveness. Words are randomly sampled from throughout the distribu-

tion. The blue words are tags for males, and the pink words indicate tags for females. This

gives us a sense for whether or not the tags are corresponding to the variables in the plot.

The data looks roughly reasonable: the tag “average” shows up in the middle of the graph,

while someone tagged “topless” is in the liberal/attractive quadrant and someone tagged

“dorky” is in the conservative/unattractive quadrant. The graph can be regenerated multi-

ple times with different random number seeds to look at distributions of tags throughout

the data.

Which Words Are Gendered?
Many social theorists have wondered to what extent gender is reflected in language. Our

data set lets us explore this at the word level: we can find which description tags are most

characteristic of male or female faces. We could just count the words that occur most often

for men and the words that occur most often for women, but generally this just gets words

that are frequent everywhere. A better approach is to score tags by their ratio of occurrences

between genders. That is, to determine how characteristic a tag T is for gender G, look at:

This has a flaw: rare tags introduce noise. For example, any tag that appears just once

automatically gets a perfect score of 1 for whichever gender it appeared with. (This is

another example of error due to small sample sizes that we saw for sparse age buckets.) A

simple way around this is to use a frequency threshold. In this case, we’ll only look at tags

that occur more than 100 times.

Calculating these scores—in statistical terminology, they’re maximum likelihood estimates

of the conditional probabilities Pr(G|T)—we get the following tables.

Words most characteristic of men are shown in the following table.

G T Ratio

daddy 122 122 1.0000000

fatherly 115 115 1.0000000

fratboy 177 177 1.0000000

father 172 173 0.9942197

dad 341 343 0.9941691

douche 229 231 0.9913420

Handsome 110 111 0.9909910

scruffy 149 151 0.9867550

bald 343 350 0.9800000

jock 395 404 0.9777228

handsome 510 524 0.9732824

no. of occurrences of tag T for a face with gender G
no. of occurrences of tag T overall

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 295

Words most characteristic of women are as follows.

It’s perhaps surprising how extremely gendered words such as “handsome,” “gamer,”

“Bubbly,” and “slut” are. They appear with their gender almost all of the time.

Clustering
What are the typical types of people in our data? Clustering is a powerful statistical

method to find this sort of pattern. A clustering algorithm splits data points into several

characteristic classes by grouping together similar instances. There are many methods for

clustering, but one of the most popular and simple methods is called k-means. In k-means,

each cluster has a center point, a “centroid.” Several different centroids are found in the

thug 141 145 0.9724138

tool 255 264 0.9659091

player 522 542 0.9630996

Gay 307 319 0.9623824

jerk 131 137 0.9562044

gamer 103 108 0.9537037

fag 148 156 0.9487179

pimp 121 128 0.9453125

G T Ratio

Bubbly 118 118 1.0000000

Mom 161 161 1.0000000

busty 148 148 1.0000000

milf 267 267 1.0000000

mom 1,088 1,088 1.0000000

motherly 396 396 1.0000000

partygirl 221 221 1.0000000

mommy 307 308 0.9967532

mother 358 360 0.9944444

ditzy 144 145 0.9931034

fjortis 113 114 0.9912281

MILF 103 104 0.9903846

Pretty 926 935 0.9903743

cheerleader 159 161 0.9875776

boobs 153 155 0.9870968

makeup 143 145 0.9862069

bitchy 284 288 0.9861111

cougar 141 143 0.9860140

slutty 538 546 0.9853480

slut 509 517 0.9845261

G T Ratio

296 C H A P T E R S E V E N T E E N

data and each data point is assigned to a centroid. The algorithm iteratively adjusts the

clusters so that as many data points as possible are close to their assigned centroids.

In our data set, each face has about 20 numeric attributes. Thus, faces are points in a 20-

dimensional space. K-means will place faces into several different clusters within that

space, trying to select clusters where faces are as similar to their cluster’s center as possible.

One unfortunate aspect about k-means clustering is that you have to pick a fixed number

of clusters, “k”, upfront. However, there isn’t an obvious way to choose the number of

clusters. The best thing to do is to try a few different numbers and see what patterns

emerge. Here’s one run of k-means we did that gave reasonable output:

Preprocess the data, > norm_data = apply(d, 2, function(x) {
by changing missing values to the mean, x[is.na(x)] = mean(x, na.rm=TRUE)
and unit-normalizing values, x = (x - mean(x)) / sd(x)
which usually makes k-means work better. x })
Then run k-means for 5 clusters, > clus = kmeans(norm_data, 5)
and plot attractiveness vs. age, > plot(dage, dattractive,
but color by col = c("red", "purple", "blue", "orange",
cluster assignment, "green","darkturquoise")[clus$cluster],
and have fun with unicode. pch = ifelse(d$male, '\u2642', '\u2640'))

Points on the scatterplot represent faces, with colors corresponding to the clusters they

were assigned to. We’re showing faces within the attractiveness versus age space, like our

earlier plots. A few clusters are already interpretable: the orange cluster corresponds to

older people, purple seems to be attractive young people, and so on.

This plot shows only 2 or 3 dimensions of the data, so does not adequately summarize the

clustering algorithm, which compares faces in the full 20-dimensional space. That’s why

some clusters overlap: for example, red and green seem to have fairly similar ranges of age

and attractiveness. Those clusters must differ by other attributes.

Let’s look at individual clusters in several ways. First we show a cluster’s attribute weights.

This is the position of the cluster’s centroid point, which can be thought of as the typical

attributes for a face in that cluster. So if you looked at the average points per cluster in

Figure 17-13, that would give you the cluster weightings for age and attractiveness. (We’ll

show eight attributes; the rest are insignificant because of too many missing values.) Sec-

ond, we show the top 10 characteristic tags for faces in that cluster, ranked by conditional

probability like in the earlier gender analysis.

First off, here’s the purple cluster in Figure 17-14. This is a heavily female, highly attrac-

tive cluster. The tags are interesting. They uncannily resemble the attributes; in fact, if you

cover up the graph on the left, you probably could guess many of the attributes for the

group. The tags paint a coherent and vivid picture—even though our k-means algorithm

completely ignored this information! This illustrates that tags have intuitive correlations to

social attributes. (Perhaps this is not surprising.)

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 297

We’ve put all the clusters in Figures 17-15 and 17-16, along with the four most represen-

tative faces (meaning those closest to the centroid) per cluster.

F I G U R E 1 7 - 1 3 . Attractiveness versus age, colored by cluster, showing a subsample of 2,000 points. (See Color Plate 65.)

F I G U R E 1 7 - 1 4 . Cluster 2.

–2 –1 0 1 2

male

age

attractive

intelligence

trustworthy

weight

political_affiliation

intoxicated

Purple cluster tags
c = # of occurrences of the tag in the
 purple cluster
t = # of occurrences of the tag overall

verycute
striking
flirty
superficial
cheerleader
prissy
snobby
flirt
exotic
peppy

c t ratio
226 525 0.430
204 606 0.336
113 439 0.257
106 437 0.242
202 837 0.241
126 561 0.224
121 545 0.222
170 785 0.216
498 2327 0.214
123 579 0.212

Purple cluster centroid

298 C H A P T E R S E V E N T E E N

Some of the clusters have straightforward interpretations, and some are less clear:

Purple cluster

Young, attractive women.

Blue cluster

Unattractive, unintelligent men. (“Losers”?)

Green cluster

Other, more generic young men. Many of its tags are also highly likely for the blue

cluster.

F I G U R E 1 7 - 1 5 . Cluster centroids, tags, and exemplars. (See Color Plate 66.)

–2
–1

0
1

2

Pu
rp

le
cl

us
te

r

Cl
us

te
r c

en
tr

oi
d

M
os

t t
yp

ic
al

 ta
gs

Ex
am

p
le

 fa
ce

s

m
al

e
ag

e
at

tr
ac

tiv
e

w
ei

gh
t

in
te

lli
ge

nc
e

tr
us

tw
or

th
y

po
lit

ic
al

_a
ff

ili
at

io
n

w
ea

lth –2
–1

0
1

2

B
lu

e
cl

us
te

r

m
al

e
ag

e
at

tr
ac

tiv
e

w
ei

gh
t

in
te

lli
ge

nc
e

tr
us

tw
or

th
y

po
lit

ic
al

_a
ff

ili
at

io
n

w
ea

lth –2
–1

0
1

2

G
re

en
cl

us
te

r

m
al

e
ag

e
at

tr
ac

tiv
e

w
ei

gh
t

in
te

lli
ge

nc
e

tr
us

tw
or

th
y

po
lit

ic
al

_a
ff

ili
at

io
n

w
ea

lth

Fr
at

bo
y

Pl
ay

er
Jo

ck
m

et
ro

jo
ck

pl
ay

er
Co

ck
y

H
an

ds
om

e
ha

nd
so

m
e

as
s

ve
ry

cu
te

Fl
ir

ty
su

pe
rf

ic
ia

l
ch

ee
rl

ea
de

r
pr

is
sy

sn
ob

by
ex

ot
ic

fli
rt

Bu
bb

ly
pe

rk
y

be
nc

h
po

p
th

ug
st

on
er

re
dn

ec
k

pl
ay

er
fr

at
bo

y
id

io
t

ga
ng

st
a

co
ck

y

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 299

Red cluster

Other young women.

Orange cluster

Older women.

Turquoise cluster

Older men.

Clustering can be useful to find high-dimensional patterns or groups in data that are hard

to visualize in two dimensions. On the other hand, it’s hard to validate whether clustering

is telling you anything “real.” There are many clustering algorithms and many parame-

ters to tweak (such as that k), which can give different results. Was this exercise useful?

F I G U R E 1 7 - 1 6 . Cluster centroids, tags, and exemplars, continued. (See Color Plate 67.)

Cl
us

te
r c

en
tr

oi
d

M
os

t t
yp

ic
al

 ta
gs

Ex
am

p
le

 fa
ce

s

–2
–1

0
1

2

R
ed

cl
us

te
r

m
al

e
ag

e
at

tr
ac

tiv
e

w
ei

gh
t

in
te

lli
ge

nc
e

tr
us

tw
or

th
y

po
lit

ic
al

_a
ff

ili
at

io
n

w
ea

lth

–2
–1

0
1

2

O
ra

ng
e

cl
us

te
r

m
al

e
ag

e
at

tr
ac

tiv
e

w
ei

gh
t

in
te

lli
ge

nc
e

tr
us

tw
or

th
y

po
lit

ic
al

_a
ff

ili
at

io
n

w
ea

lth

–2
–1

0
1

2

Tu
rq

uo
is

e
cl

us
te

r

m
al

e
ag

e
at

tr
ac

tiv
e

w
ei

gh
t

in
te

lli
ge

nc
e

tr
us

tw
or

th
y

po
lit

ic
al

_a
ff

ili
at

io
n

w
ea

lth

gr
an

dp
a

fa
th

er
ly

fa
th

er
da

d
su

cc
es

sf
ul

ba
ld

da
dd

y
jo

lly
pr

of
es

si
on

al
O

ld

fjo
rt

is
st

ri
ki

ng
bi

m
bo

go
th

ic
Em

o
go

th
di

tz
y

U
ni

qu
e

to
m

bo
y

at
tit

ud
e

gr
an

dm
a

m
ot

he
rl

y
co

ug
ar

m
om

m
ot

he
r

M
om

m
om

m
y

te
ac

he
r

m
ilf

ol
de

r

300 C H A P T E R S E V E N T E E N

Well, the clusters seem fairly coherent, and are quite suggestive of a number of patterns.

It’s interesting to see vivid sets of tags are associated with each. And k-means might pro-

vide an analogue to how our minds think of people. From the centroids and tag sets, we

can imagine a prototypical person representing each cluster.

Conclusion
Our data indicates that people hold some familiar stereotypes. Women are considered

more attractive than men. Age has a stronger attractiveness effect for women than men.

The space of social attributes falls along lines that feel familiar to us: jocks, fathers, attrac-

tive young women. But there are also some potential surprises: babies are most attractive,

conservatives look more intelligent, etc. We also found examples of gendered words.

We’re tempted to go on and on with suggestive findings, but the point of this chapter is

not to come to any particular conclusion. Instead, we wanted to show some examples of

the rich set of significant patterns contained in a large, messy data set of human judg-

ments. A more rigorous data collection process—such as carefully controlled lab experi-

ments—would never produce such a volume of data, but could be useful as follow-up

experiments.

Every day we reveal more and more about ourselves through the things we buy, the web-

sites we use, the queries we search for, the messages we send, and the places we go.

Whether we like it or not, for the first time in human history all this data is being carefully

saved. Setting aside the important privacy concerns, the value to social science is enor-

mous. Through this mess of repurposed information, we will learn about ourselves in

completely new ways.

Acknowledgments
Many thanks to all the people who gave feedback for early drafts of this chapter: Joanna

Gubman, Sasha Goodman, Jeff Hammerbacher, Mike Love, Will Moffat, and Toby Segaran.

FaceStat owes its existence to the hard and brilliant work of our colleague Chris Van Pelt.

References
We have uploaded a subset of the data, as well as notes and code to help replicate our

analyses, at http://data.doloreslabs.com.

If you’re interested in learning R, we recommend two websites:

Quick-R (http://statmethods.net)

High-level overviews and topic guides, by Robert Kabacoff.

RSeek (http://rseek.org)

A search engine for R documentation, packages, and mailing lists, by Sasha Goodman.

http://data.doloreslabs.com
http://statmethods.net
http://rseek.org

S U P E R F I C I A L D A T A A N A L Y S I S : E X P L O R I N G M I L L I O N S O F S O C I A L S T E R E O T Y P E S 301

R’s official website is http://www.r-project.org. If you are interested in how it compares to

other data analysis packages, see the many comments on an early draft of Table 17-2 at

http://anyall.org/blog/?p=421.

The most commonly recommended book for learning R is Peter Dalgaard’s Introductory Sta-

tistics with R (Springer; 2008).

Aside from R’s core functionality, some of the add-on packages we used include corrgram,

flowCore, gclus, geneplotter, plyr, and pixmap.

Good overviews of clustering, loess, and other machine learning techniques are in The Ele-

ments of Statistical Learning by Trevor Hastie, Robert Tibshirani, and Jerome Friedman

(Springer; 2008).

The section on tags barely touches the surface of statistical language analysis. For more,

see the chapters on corpus linguistics from Foundations of Statistical Natural Language Process-

ing by Christopher Manning and Hinrich Schütze (MIT Press; 1999) and also Speech and

Language Processing by Daniel Jurafsky and James H. Martin (Prentice Hall; 2008).

There are many better ways for estimating confidence intervals for the attractiveness ver-

sus age analysis. One method is partial pooling; see pp. 252–258 of Andrew Gelman and

Jennifer Hill’s Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge

University Press; 2006).

What we do in this chapter is called “exploratory data analysis” (EDA)—as opposed to the

ploddingly careful hypothesis testing that is usually taught in statistical methodology

courses. Exploratory data analysis was strongly advocated by statistician John Tukey in his

1977 book of the same name (Addison-Wesley).

Our startup, Dolores Labs, specializes in crowdsourcing: collecting human task data from

large masses of people to solve practical problems in content moderation, information

extraction, web search relevance, and other domains. We collect, look at, and automatically

analyze lots of human judgment data. You can see follow-ups to this chapter, and analyses

of other subjects such as sex, colors, and ethics, at our blog: http://blog.doloreslabs.com.

http://www.r-project.org
http://anyall.org/blog/?p=421
http://blog.doloreslabs.com

303

Chapter 18 C H A P T E R E I G H T E E N

Bay Area Blues: The Effect of the
Housing Crisis

Hadley Wickham, Deborah F. Swayne, and David Poole

Introduction
THE HOUSING MARKET HAS RECEIVED A GREAT DEAL OF ATTENTION IN THE MEDIA FOR THE PAST SEVERAL

years. From about 2000 until 2006, we watched with excitement and apprehension as

prices soared; since then, we’ve watched them tumble as credit became scarce and fore-

closures mounted. In this chapter, we take a closer look at this story by analyzing the sales

of half a million homes in the San Francisco Bay Area from 2003 to 2008. What can we

learn about the way prices rose and fell throughout a single region and across a wide

range of prices?

We begin by describing the data, how we obtained it, and how we prepared it for analysis

by restructuring, transforming, cleaning, and augmenting the raw data. As our analysis

proceeds, we communicate most of our observations using graphical displays. Along the

way, we will also describe some of the tools we use, most of which are freely available.

Our main tool is R, a statistical programming and data analysis environment, and we used

it at all stages: fetching, cleaning, analysis, diagnostics, and presentation.

304 C H A P T E R E I G H T E E N

How Did We Get the Data?
Once we decided that we were interested in real estate sales, the search for data began.

Data searches are not always successful, so we felt particularly lucky when we found

weekly sales of residential real estate (houses, apartments, condominiums, etc.) for the

Bay Area produced by the San Francisco Chronicle at http://www.sfgate.com/homesales/. We felt

even luckier when we figured out that we didn’t have to extract the data by parsing web

pages, but that the data is already available in a machine-readable format.

Each human-readable (HTML web page) weekly summary is built from a text file that

looks like this:

rowid: 1
county: Alameda County
city: Alameda
newcity: 1
zip: 94501
street: 1220 Broadway
price: $509,000
br: 4
lsqft: 4420
bsqft: 1834
year: 1910

The data for each week is available at a URL of the form http://www.sfgate.com/c/a/<year>/

<month>/<day>/REHS.tbl. This is pretty convenient and only requires generating a list of all

Sundays from the first on record, 2003/04/27 (which we found on the archive page), to

the most recent (at the time of analysis), 2008/11/16. With this list of dates in hand, we gen-

erated a list of URLs in the correct format and downloaded them with the Unix command-

line tool wget. We used wget because it can easily resume where it left off if interrupted.

With all the data on a local computer, the next step was to convert the data into a stan-

dard format. We often use the csv (comma-separated values) format; it is easy to generate

csv files, and every statistical package (and Excel!) can read them. We generated a csv file of

the form:

county,city,zip,street,price,br,lsqft,bsqft,year,date,datesold
Alameda County,Alameda,94501,1220 Broadway,509000,4,4420,1834,1910,2003-04-27,NA
Alameda County,Alameda,94501,429 Fair Haven Road,504000,4,6300,1411,1964,2003-04
-27,NA
Alameda County,Alameda,94501,2804 Fernside Boulevard,526000,2,4000,1272,1941,200
3-04-27,NA
Alameda County,Alameda,94501,1316 Grove Street,637000,3,2700,1168,1910,2003-04-2
7,NA

The original format may have been easier for a human to read, but this is easier for com-

puters. It is both more standard and more compact (45 megabytes instead of 90). If you

look closely at the sample data you might notice something that needs some explanation:

the NAs. NA stands for “not applicable,” and is the sentinel value that R uses to represent

missing values. We must take care to account for the missing values in our analysis.

http://www.sfgate.com/homesales/

B A Y A R E A B L U E S : T H E E F F E C T O F T H E H O U S I N G C R I S I S 305

It takes only a few minutes to parse the files for all 293 weeks and create house-sales.csv, a

csv file with 521,726 observations and 11 variables. It took much more time to tweak the

parser to get all the edge cases right: we needed to convert prices to regular numbers (by

removing $ and ,), parse the dates into a consistent format, and fill in missing values for

fields that didn’t occur in all of the tables.

Geocoding
When we first looked at the data, we thought it would be really important to geocode all

436,106 unique addresses. That is, we wanted to associate a latitude and longitude with

each address so that it would be easy to explore fine-grained spatial effects. This is an

interesting challenge: how can you geocode nearly half a million addresses?

We started by looking at the well-known web services provided by Google and Yahoo!.

These were unsuitable for two reasons: they impose strict daily limits on the number of

requests, and there are cumbersome restrictions on the use of the resulting data. The

request limit alone meant that it would take well over a month to geocode all the

addresses, and then the licensing would have affected publication of the results! After fur-

ther investigation we found a very useful open service, the USC WebGIS, provided by the

GIS research laboratory at the University of Southern California (Goldberg and Wilson

2008). This service is free for noncommercial use and makes no restrictions on the uses of

the resulting data. There was no daily usage cap when we began using the service, but

there is an implicit cap caused by the speed: we could only geocode about 80,000

addresses per day, so it took us around five days to do all 400,000. The disadvantage of this

free service is that the quality of the geocoding is not quite as good (it uses only publicly

available address data), but the creators were very helpful and have published an excellent

free introduction to the topic in (Goldberg 2008).

As well as latitude and longitude, the USC results also include a categorical variable indi-

cating their degree of accuracy: exact address, zip code, county, etc.

Data Checking
It is generally worth spending a significant amount of time at every stage of an analysis to

make sure that the data is accurate, and geocoding was no different. Errors in geocoding

came from a number of sources: there are typographical errors in the addresses, new

buildings are often not listed in public databases, and zip codes may be reassigned over

time. We further suspect that the USC software included a bug during the period we used

it, because large numbers of addresses were falsely assigned to the Los Angeles area and

elsewhere around the state; we remapped these addresses using another free online ser-

vice at http://gpsvisualizer.com. Our debugging process included using R to draw simple

maps of latitude versus longitude for each county and most towns to identify the addresses

that had been located far outside the Bay Area.

http://gpsvisualizer.com

306 C H A P T E R E I G H T E E N

The addresses in San Jose posed an interesting geocoding challenge. Sales are listed for

several “towns” that are not recognized by any mapping sites we could find, so we assume

they are informal names for neighborhoods: North, South, East and West San Jose,

Berryessa, Cambrian, and a few others.

Where possible we tried to correct any errors. When that was not possible, we used R’s

missing values to indicate that we do not know the exact latitude and longitude. This is a

better approach than throwing out bad matches, because we need varying levels of accu-

racy for different purposes: when we map the data at the level of county or city, we can be

satisfied with an approximate location. The use of missing values for latitude and longi-

tude ensures that any location with a suspicious geocoding will be dropped from analyses

that use latitude and longitude, but included in all others.

Analysis
For a broad overview of the changes in the housing market, we’ll start with the evolution

of the average sale price and number of sales. Since the data is reported weekly, that’s a

natural time unit to use.

Figure 18-1 shows weekly average sale price and number of sales for the 293 weeks in the

data. There are some very interesting patterns. The behavior of the average price is strik-

ing, with an increasing trend until June 2007 and then a precipitous drop to the present

day—a clear illustration of the boom and bust in housing prices.

Sales look quite different. Most years (especially 2004 and 2005) show a marked seasonal

effect, with a peak in mid- to late summer and fewer sales in the winter months. (This

may be a good place to note that the data only rarely includes the true closing date, so

we’re using the date when the sale was reported in the newspaper, which may be four to

six weeks later than the closing.) Once we look past the seasonal effect, we see something

else. From the middle of 2006 until early 2008, sales volume decreases, surely an indicator

of the housing bust. However, the sharpness of the drop in early 2008 may also reflect the

winter slowdown in sales. And what about the increase starting in early 2008? One possi-

bility is that by this point house prices had dropped enough that buyers were shopping for

bargains with the arrival of spring. Another possibility is that some of this increase is due

to foreclosure sales. Perhaps the explanation will be clearer in a few more months.

These simple plots suggest some directions for further exploration. Are these patterns the

same for homes in all price ranges? What about different cities, or within neighborhoods

of a single city? To investigate these questions, we’ll follow roughly the same procedure:

we’ll partition the data in different ways and compare the patterns for each partition. We

will create partitions based on house price (from most expensive to least) and physical

location, both between cities and within a single city (San Francisco).

B A Y A R E A B L U E S : T H E E F F E C T O F T H E H O U S I N G C R I S I S 307

The Influence of Inflation
Before proceeding with the analysis, though, we pause to consider inflation. The data was

collected over a relatively short period of time (almost six years), but we wonder if we

should adjust for inflation to ensure that the prices paid in 2003 are comparable to the

prices paid in 2008. A commonly used reference for calculating inflation is the consumer

price index (CPI) produced by the Bureau of Labor Statistics at http://www.bls.gov/CPI. The

CPI calculates the price of a weighted “basket” of frequently purchased consumer goods

and services. This price is calculated monthly, and we will use the west coast series, series

CUUR0400SA0, to adjust for inflation as follows. We want to adjust all values to 2003 dol-

lars, so we divide each CPI value by its value in March 2003. This operation is also known

as indexing. It gives the relative worth of a 2003 dollar at each point in time and makes it

easy to read the effect of inflation from the graph: a value of 1.1 represents a cumulative

inflation of 10% from the start of the data. Figure 18-2 shows the CPI-based inflation

measurement and the effect of adjusting prices for inflation. Inflation has been steadily

climbing over the last five years, and we can see that the inflation-adjusted rise in house

prices is slightly less pronounced than the unadjusted trend.

F I G U R E 1 8 - 1 . Weekly average prices (top) and sales (bottom), showing clear evidence of the housing boom and bust.

Note, however, the uptick in sales in 2008.

A
ve

ra
ge

 p
ri

ce
 (m

il
li

on
s)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

2004 2005 2006 2007 2008 2009

N
um

b
er

 o
f s

al
es

1,000

1,500

2,000

2,500

3,000

2004 2005 2006 2007 2008 2009

http://www.bls.gov/CPI

308 C H A P T E R E I G H T E E N

Finally, though, we decided not to adjust the sale prices for inflation. Housing prices have

an influence on the CPI because one of its subindices is a housing index, a measure of rent

and “owner’s equivalent rent.” It could probably be argued that housing prices had a sig-

nificant effect on the CPI throughout the period under study.

With this basic overview in hand, we now drill down into the details. In the following sec-

tions we break the house sales into smaller groups, first by price and then by location. We

are interested in finding out whether the housing crisis has affected some groups of home-

owners more than others.

The Rich Get Richer and the Poor Get Poorer
Has the housing crisis equally affected the rich and the poor? Has the effect of the crisis

been to improve or worsen the relative equality of these two groups? In this section, we

will explore how the crisis has affected the distribution of housing prices. A big caveat is

that we are looking at the Bay Area, so homes will be more expensive than in many other

F I G U R E 1 8 - 2 . (Top) Inflation, indexed at 1 at start of series. (Bottom) Inflation-adjusted house prices in 2003 dollars

(black), and unadjusted prices (gray). Failing to adjust for inflation makes the rise look a bit steeper, but has little effect on the

decline. Monterey, San Benito, San Joaquin, and Santa Cruz counties are excluded because we only have data for 2008.

In
fl

at
io

n

1.00

1.05

1.10

1.15

2004 2005 2006 2007 2008

A
ve

ra
ge

 p
ri

ce
 (m

il
li

on
s)

0.5

0.6

0.7

0.8

2004 2005 2006 2007 2008 2009

B A Y A R E A B L U E S : T H E E F F E C T O F T H E H O U S I N G C R I S I S 309

places in the country, but we still expect to see some relative inequalities. (NB. In the fol-

lowing, we will frequently use the word “houses” to refer to all categories of residential

real estate: houses, townhouses, apartments, etc.)

As a first step, we calculate price deciles for each month. The deciles are the nine prices for

which 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of houses cost less. This is

a succinct summary of the distribution of the prices for each month: instead of just looking

at the average price, as we did earlier, we have nine numbers that summarize the com-

plete distribution of the prices. (We don’t display the curves for the minimum or maxi-

mum price, because they would be too choppy.)

Figure 18-3 shows how these deciles have changed over time. The top line is the ninth

decile, the price that 90% of houses are less than, and the bottom line is the first decile,

the price that only 10% of houses are cheaper than. The line in the middle is the median,

the price that divides the houses into halves, half cheaper and half more expensive. The

lines are colored from dark to light, from most to least expensive. Each line follows a simi-

lar pattern, and we can see the effect of the housing bubble in mid-2007, particularly in

the most expensive houses.

This plot lets us compare the absolute values of each decile, but maybe it is more appropri-

ate to look at the relative prices: how have the prices changed proportionately? One way

to look at the relative price is to compare each decile to its initial value. To do this we

index each decile, dividing each series by its initial price, just as we did for the CPI.

Figure 18-4 shows these indices. Each decile starts at 1.0, and we can see the relative

change in price over time. The interesting aspect of this plot is that the cheaper houses

(the lighter lines) seem to peak higher and earlier (mid-2005), and then drop more rapidly

thereafter. (Note the way the dark and light lines switch places in early 2007.) The cheap-

est houses, in the lowest decile, lost 43% of their 2003 value compared to only 9% for the

F I G U R E 1 8 - 3 . Monthly average house price within each decile. Lower deciles have lighter colors. This plot clearly

shows the nature of the bubble for the more expensive residences, but it is unrevealing about its effects at the lowest price

ranges.

Pr
ic

e
(m

il
li

on
s)

0.2

0.4

0.6

0.8

1.0

1.2

2004 2005 2006 2007 2008 2009

310 C H A P T E R E I G H T E E N

most expensive houses. Comparing Figures 18-3 and 18-4, we see that although the big-

gest absolute decline in actual prices occurred at the expensive end, it was the cheapest

houses that proportionately lost the most value.

Another way to look at this inequality is Figure 18-5. Here we have divided all the prices

by the median price. The values now represent a proportion of the median house price: a

value of 1.2 represents a price 20% higher than the median, and 0.8 is 20% lower. Since

the beginning of 2007, while the boom was still in full force at the high end, relative ine-

quality has been growing. Does this suggest that a widening of the price gap between

expensive and cheap homes is a precursor to a subsequent crisis? Has this preceded other

crises? These questions could be investigated further, but we don’t have the data to pursue

them here.

F I G U R E 1 8 - 4 . Indexed house price within each decile. (The lighter the color, the lower the price.) The bust began

earlier at the low end: the average price of less expensive houses peaked higher and earlier, and fell more steeply.

F I G U R E 1 8 - 5 . House prices relative to the price of the median-priced home. The disparity in home prices has been

increasing since early 2007.

Pr
op

or
ti

on
al

 c
ha

ng
e

in
 v

al
ue

0.6

0.8

1.0

1.2

1.4

2004 2005 2006 2007 2008 2009

Va
lu

e
re

la
ti

ve
 to

 m
ed

ia
n

ho
us

e
p

ri
ce

0.5

1.0

1.5

2.0

2004 2005 2006 2007 2008 2009

B A Y A R E A B L U E S : T H E E F F E C T O F T H E H O U S I N G C R I S I S 311

Geographic Differences
In this section we explore the changes in home prices in different cities in the Bay Area.

Because we are looking at average prices, we must take care not to include cities with only

a few sales. We decided to focus on all cities with an average of at least 10 sales per week.

This gave us 58 cities (24% of the 245 cities in the data) with 428,415 sales (82% of the

sales).

We then calculated the average weekly house price. Figure 18-6 shows these prices, with

each city drawn with a different line. Statisticians have an evocative name for this type of

display: the spaghetti plot. It’s very hard to see anything in the big jumble of lines. One

method of improvement is to smooth each line, removing short-term variation and allow-

ing us to focus on the long-term trends we are looking for.

To create smooth curves, we used generalized additive models (GAM), a generalization of

linear models (Wood 2006). This method fits smooth curves by optimizing the trade-off

between being close to the data and being very smooth, in effect removing noisy short-

term effects and emphasizing the long-term trend. This is exactly what we need: we are

not interested in daily or weekly changes, only the long-term changes related to the hous-

ing crisis.

The top part of Figure 18-7 shows the result of this smoothing. This is a big improvement.

Now we can actually see some patterns! Note the big difference in scales between this plot

and the first: smoothing the data has removed the large spikes that represent the sales of a

few very expensive houses. We will also index each city in the same way we indexed each

decile: dividing by the starting price puts each city onto a common scale and allows us to

focus on the changes. This is shown at the bottom of Figure 18-7.

There is a still a lot of variation, but we can start to see a pattern of increasing values until

mid-2007, and then decreasing values afterward. To get any further, we need to look at

the cities individually, as in Figure 18-8. This plot takes up a lot of space but is worthwhile

for the extra information it affords. We can pick out some interesting patterns: Berkeley

and San Francisco show less of a peak and less of a drop, and Mountain View is unique in

that it has seen no drop at all in housing prices. Other cities, such as Oakley, Vallejo, and

San Pablo, show both big peaks and big drops.

F I G U R E 1 8 - 6 . Average sale price for each week for each city. This type of plot is often called a spaghetti plot. It

suggests the need for smoothing, because the week-to-week variation in the curves makes it impossible to detect trends.

A
ve

ra
ge

 s
al

e
p

ri
ce

 (m
il

li
on

s)

0.5
1.0
1.5
2.0
2.5
3.0

2004 2005 2006 2007 2008 2009

312 C H A P T E R E I G H T E E N

Recall that in our earlier discussion of San Jose, we noted that the raw data describes many

neighborhoods of San Jose as cities in their own right. Because of this, it sometimes happens

that the same address is assigned to more than one neighborhood, but this data suggests that

the neighborhoods have distinct characters. Berryessa, East San Jose, North San Jose, and

South San Jose have similar curves, showing a sharp peak and an equally sharp drop; Cam-

brian, San Jose, and West San Jose, on the other hand, don’t show much of a decline.

After further investigation, we concluded that there was one main feature that seemed to dis-

tinguish the different cities: the difference between prices at the peak of the boom and the

depth of their most recent plummet. We created a new variable called price drop, which is the

relative decrease in average price between February 2006 (at the height of the boom) and

November 2008 (the doldrums at the time of writing). Figure 18-9 groups the cities by this

new variable. The divisions are arbitrary, but one can see how the cities in each group follow

a similar pattern: the bigger the boom, the bigger the collapse. This suggests that this single

number does a good job of summarizing the boom-and-bust aspect of the housing crisis.

F I G U R E 1 8 - 7 . Smoothed weekly average sale prices, one curve for each city (top). The curves in the plot at the bottom

have been indexed to show proportional changes in price. Patterns are beginning to emerge.

A
ve

ra
ge

 s
al

e
p

ri
ce

 (m
il

li
on

s)

0.4

0.6

0.8

1.0

1.2

2004 2005 2006 2007 2008 2009

Pr
op

or
ti

on
al

 c
ha

ng
e

in
 p

ri
ce

0.8

1.0

1.2

1.4

1.6

2004 2005 2006 2007 2008 2009

B A Y A R E A B L U E S : T H E E F F E C T O F T H E H O U S I N G C R I S I S 313

F I G U R E 1 8 - 8 . Individual plots of the sales price for each city, smoothed and indexed. These are exactly the curves that

were plotted on top of one another in the previous figure (bottom). San Pablo’s curve shows the boom and bust of the

housing market; Berkeley’s curve shows less variation; Mountain View seems to be the only city where prices continue to

rise.

0.8
1.0
1.2
1.4
1.6

0.8
1.0
1.2
1.4
1.6

0.8
1.0
1.2
1.4
1.6

0.8
1.0
1.2
1.4
1.6

0.8
1.0
1.2
1.4
1.6

0.8
1.0
1.2
1.4
1.6

0.8
1.0
1.2
1.4
1.6

0.8
1.0
1.2
1.4
1.6

0.8
1.0
1.2
1.4
1.6

0.8
1.0
1.2
1.4
1.6

Alameda

Campbell

Discovery Bay

Gilroy

Milpitas

Novato

Redwood City

San Mateo

South San Francisco

Vallejo

05 07 09

Antioch

Castro Valley

Dublin

Hayward

Morgan Hill

Oakland

Richmond

San Pablo

South San Jose

Walnut Creek

05 07 09

Berkeley

Concord

East San Jose

Hercules

Mountain View

Oakley

Rohnert Park

San Rafael

Suisun City

West San Jose

05 07 09

Berryessa

Cupertino

Evergreen

Livermore

Napa

Petaluma

San Francisco

San Ramon

Sunnyvale

Willow Glen

05 07 09

Brentwood

Daly City

Fairfield

Los Gatos

Newark

Pittsburg

San Jose

Santa Clara

Union City

05 07 09

Cambrian

Danville

Fremont

Martinez

North San Jose

Pleasanton

San Leandro

Santa Rosa

Vacaville

05 07 09

314 C H A P T E R E I G H T E E N

We have determined that cities have different patterns, but we don’t yet know why that

might be so. The geographic pattern, as in Figure 18-10, does not reveal anything particu-

larly striking except that the worst-hit towns tend to be to the north and east of San Fran-

cisco. This does not offer much in the way of explanatory power, so we looked for

additional data that might help us gain a deeper understanding.

Census Information
The U.S. Census Bureau provides demographic data from recent surveys at both the

county and city levels. The quickfacts website (e.g., http://quickfacts.census.gov/qfd/states/06/

0649670.html) displays a number of interesting demographic variables for each city. Unfor-

tunately, city-level data is not available in an easily downloadable format, but we were

able to use scripting methods (like those we used for the sales data) to collect the demo-

graphic information and convert it into csv format. In addition, the definition of a city dif-

fered slightly between the census data and the sales data, so we could match only 46 out

of the full 58 cities. The census data didn’t cover some of cities we chose, because their

population was below some cutoff, and some of what the housing data calls “cities” are

actually neighborhoods within larger cities, as we noted earlier with respect to San Jose.

A glance at the demographic variables revealed that the most affected cities have a high

percentage of babies and children, bigger households, fewer bachelor’s degrees, and longer

commutes. Most significantly, these cities also have lower average incomes, which is prob-

ably the factor that drives many of the other relationships. Figure 18-11 includes three

scatterplots that illustrate the relationship between the drop in home prices and income,

F I G U R E 1 8 - 9 . Plots grouping the curves for towns by their value of price drop. The towns in the upper-left plot had the

largest price declines (between 0.8 and 1, or 80% and 100%); the town at the lower right (Mountain View) is the only one

that shows no decline. The patterns within each group are similar, suggesting that this single number provides a useful

way to divide the cities into groups.

0.8

1.0

1.2

1.4

1.6

0.8

1.0

1.2

1.4

1.6

(−0.2,0]

(0.4,0.6]

04 05 06 07 08 09

(0,0.2]

(0.6,0.8]

04 05 06 07 08 09

(0.2,0.4]

(0.8,1]

04 05 06 07 08 09

http://quickfacts.census.gov/qfd/states/06/0649670.html
http://quickfacts.census.gov/qfd/states/06/0649670.html

B A Y A R E A B L U E S : T H E E F F E C T O F T H E H O U S I N G C R I S I S 315

percentage of college graduates, and commute time. The correlation between price drop

and commute time is weak, but note that all of the cities with the longest commute times

(more than 35 minutes) have particularly large drops in price. It appears that the housing

crisis has been relatively more damaging in poorer areas.

The county-level census data contains more variables than the data for cities, so we ana-

lyzed the county data for further explanation of the housing crisis. The plot at the top of

Figure 18-12 shows, for each county in which we had sales data, the percentage change in

the number of housing units (from 2000 to 2006) plotted against the median sale price in

2008. There is a strong negative relationship between recent home values and the amount

of new construction. In other words, most of the building boom in recent years occurred

in poorer neighborhoods, and as we noted earlier, these are also the areas where the sub-

sequent slump has been the most severe. San Joaquin county in particular, which has consis-

tently low prices across towns, experienced by far the most new construction in recent years.

We should note that we do not have many sales in a few of these counties (e.g., San Benito

and Santa Cruz), but the overall nature of this relationship is still very clear. The effect is

further illustrated by the bottom plot in Figure 18-12, which again shows the percentage

change in housing units from 2000 to 2006, but this time plotted against the 2005 per-

capita income at the county level, obtained from the census data. We notice the similar-

ity to the previous plot, and it illustrates again that the intensity of new construction

was higher in less affluent areas, even when aggregated across cities to the county level.

F I G U R E 1 8 - 1 0 . The geographic distribution of price drop. The worst-hit towns tend to be to the north and the east. The

single circle represents the location of Mountain View, the only city where the sale price has continued to increase.

drop

0.10

0.25

0.50

0.75

direction

−1

1

316 C H A P T E R E I G H T E E N

It is clear too that prices and income are strongly positively correlated, which we observed

at the city level in Figure 18-11.

F I G U R E 1 8 - 1 1 . From top to bottom, the relationship between the decline in house prices (price drop) and average

income, percentage of college graduates, and average commute time.

income

p
ri

ce
_d

ro
p

0.0

0.2

0.4

0.6

0.8

20,000 30,000 40,000 50,000

grads

p
ri

ce
_d

ro
p

0.0

0.2

0.4

0.6

0.8

20 30 40 50 60

commute

p
ri

ce
_d

ro
p

0.0

0.2

0.4

0.6

0.8

25 30 35 40

B A Y A R E A B L U E S : T H E E F F E C T O F T H E H O U S I N G C R I S I S 317

According to an article in the New York Times (McKinley 2007), the city of Stockton, one of

the larger cities in San Joaquin county, already had the highest rate of foreclosures in the

U.S. by the summer of 2007.

Unfortunately, we do not have any sales for Stockton prior to 2008, but it appears it was a

leading indicator of the slump in the region that would continue into 2008. The popula-

tion of Stockton grew rapidly in the last decade as commuters moved farther out to escape

the overheated housing market in the immediate Bay Area. This helps to explain the new

construction noted earlier, and also ties into our observation regarding commute times.

F I G U R E 1 8 - 1 2 . Relationship between new construction and recent prices (top) and personal income (bottom); data is

aggregated by county. The relative increase in the number of housing units was greatest in towns with lower-cost housing

(top) and lower per-capita income (bottom).

0.2 0.3 0.4 0.5 0.6 0.7 0.8

5
10

15

Median sale price in 2008 (millions)

Pe
rc

en
ta

ge
 c

ha
ng

e
in

 h
ou

si
ng

 u
ni

ts
 (2

00
0

to
 2

00
6)

Alameda

Contra Costa

Marin

Monterey

Napa
San Benito

San Francisco

San Joaquin

San Mateo

Santa Clara

Santa Cruz

Solano

Sonoma

20 30 40 50 60 70 80

5
10

15

Per capita personal income in 2005 (thousands)

Pe
rc

en
ta

ge
 c

ha
ng

e
in

 h
ou

si
ng

 u
ni

ts
 (2

00
0

to
 2

00
6)

Alameda

Contra Costa

Marin

Monterey

Napa
San Benito

San Francisco

San Joaquin

San Mateo

Santa Clara

Santa Cruz

Solano

Sonoma

318 C H A P T E R E I G H T E E N

The article also lists Modesto and Merced, two other towns in the Central Valley, in the

top 10 nationwide for foreclosures at that time.

Exploring San Francisco
Having explored the differences between cities, we turned to look at a single city in more

detail. San Francisco is the obvious choice: it is the largest city in the data, it is the city with

which we are most familiar, and it has some iconic features that should be easy for others to

identify, too. We started our exploration by extracting all addresses within San Francisco that

were geocoded with a fairly high degree of accuracy, giving us a total of 25,377 addresses. We

created a simple scatterplot of the latitudes and longitudes, shown in Figure 18-13.

F I G U R E 1 8 - 1 3 . (Top) A small point is drawn for every residential sale in the data. It gives us a pretty good feel for the

layout of San Francisco. (Bottom) For comparison, a street map of San Francisco from http://openstreetmap.com. (See Color

Plate 68.)

B A Y A R E A B L U E S : T H E E F F E C T O F T H E H O U S I N G C R I S I S 319

For the residential parts of the city, this gives an amazingly detailed picture. We can see

the orientation of the streets, the waterfront boundaries, and parks. Our view of some

areas, like downtown, is patchier because there are fewer residential homes there. (In this

section, we will avoid using the shorthand term “house” since it is obvious that so many of

the home sales represent apartments.)

One problem with this plot is we cannot see the number of sales at each specific location.

Figure 18-14 shows two attempts to recapture the information. At the top, we have a bub-

bleplot with the size of the location proportional to the number of sales. We now get quite

a different view of the downtown: there are many sales there. Looking more closely at the

data reveals that these are apartment buildings with hundreds of apartments. At the bot-

tom, we have divided San Francisco into squares of 0.005 latitude and longitude and

counted the number of homes in each bin. This gives us a higher-level view showing

where the majority of homes are located.

Using that same binning, we calculated the mean and coefficient of variation of the home

prices. The coefficient of variation is the standard deviation divided by the mean. We use it

here because a variation of $100,000 is relatively much more important when houses are

cheap compared to when they are expensive.

Figure 18-15 shows the geographic distribution of these two summary statistics. We can

see the most expensive homes border the Presidio and coast to the north of the city. There

also seems to be a peak in the southwest: this is the affluent St. Francis Wood area, near

San Francisco State University. There is an interesting geographic trend in the coefficient

of variation: it appears to increase toward the northwest.

Conclusion
We have looked at the data from multiple angles, and we have seen the same thing: the

housing crisis has been relatively more damaging in poorer areas. The boom and the bust

hit lower-priced homes both earlier and harder; cities with lower average incomes peaked

higher and dropped lower. A great deal of the boom was associated with new construc-

tion, most of which was aimed at the lower end of the market.

Many of these new residences were built farther from San Francisco, in less developed

areas where residents had lower average incomes, more children, and longer commutes.

Although the biggest absolute decline in prices occurred at the high end, it was the less

expensive houses that lost a greater proportion of their value.

All of this is consistent with what we have learned about subprime mortgages since the

housing bust hit the headlines. Many people with poor credit were granted mortgages

with initially low monthly payments. When those payments grew, they were unable to

meet them, and the rates of mortgage defaults and foreclosures began to rise. We specu-

lated earlier that the increase in sales in 2008 may be associated with foreclosures, and an

interesting next step would be to locate data on foreclosures and align it with our sales

data.

320 C H A P T E R E I G H T E E N

We have used relatively simple statistical methods such as indexing, computing quantiles,

smoothing, and binning to explore this large and complex data set. We began with broad

summaries and then dug deeper to explore the details, but we have only scratched the

surface. If the data has caught your interest and you’d like to follow our work in more

detail, or try out some of your own ideas, you can find all data and code in a git repository

F I G U R E 1 8 - 1 4 . The geographic distribution of numbers of residential sales. (Top) This plot is similar to the previous

plot, but the size of the dot is now proportional to the number of sales at each unique location. This changes the picture

significantly, as the large apartment complexes in the city now pop out. (Bottom) A display of sales at a higher level of

aggregation: latitude and longitude are divided into a small number of bins, and the number of sales in each bin is

counted and displayed as the color of the bin.

n
1
50
100
200
252

Number
of houses

100
200
300
400
500

B A Y A R E A B L U E S : T H E E F F E C T O F T H E H O U S I N G C R I S I S 321

at https://github.com/hadley/sfhousing. All the code we wrote (R, Perl, and shell scripts) runs

on open source software, so anyone can replicate our work without buying expensive

software. The principle of reproducibility (Gentleman and Temple Lang 2007), so critical

in the laboratory sciences, is also important here: if we made a mistake, you can discover

it, fix it, and observe the effects on our conclusions.

Throughout this exercise, we have enjoyed the challenge of extracting, exploring, analyz-

ing, and ultimately gaining useful insights from this housing data. Further, we hope that

the general description of our strategies, methods, and techniques will prove useful to oth-

ers who share our interest in working with—and learning from—real data.

F I G U R E 1 8 - 1 5 . Using the same binning of latitude and longitude as in the previous figure, the mean (top) and

coefficient of variation (bottom) are computed and displayed using shades of gray.

Average
price

0.5
1
1.5
2
2.5

c.v.
0.2
0.4
0.6
0.8
1

https://github.com/hadley/sfhousing

322 C H A P T E R E I G H T E E N

References
Gentleman, Robert and Duncan Temple Lang. 2007. “Statistical analyses and reproducible

research.” Journal of Computational and Graphical Statistics, 16(1): 1–23.

Goldberg, Daniel W. 2008. “A geocoding best practices guide.” Technical report, GIS

Research Laboratory, University of Southern California. http://www.naaccr.org/filesystem/

pdf/Geocoding_Best_Practices.pdf.

Goldberg, D. W., and J. P. Wilson. 2008. USC WebGIS Services. https://webgis.usc.edu. Last

accessed December 2008.

McKinley, Jesse. “From housing to haven to foreclosure leader.” New York Times. August

13, 2007.

Wood, Simon. 2006. Generalized Additive Models: An Introduction with R. Boca Raton, FL:

Chapman & Hall/CRC.

http://www.naaccr.org/filesystem/pdf/Geocoding_Best_Practices.pdf
http://www.naaccr.org/filesystem/pdf/Geocoding_Best_Practices.pdf
https://webgis.usc.edu

323

Chapter 19 C H A P T E R N I N E T E E N

Beautiful Political Data
Andrew Gelman, Jonathan P. Kastellec, and Yair Ghitza

SOME OF THE EARLIEST HISTORICAL EXAMPLES OF DATA ANALYSIS INVOLVE POLITICS AND GOVERNMENT;
even the word “statistics” reveals the connection of data collection for and about the state.

Statistical pioneers, including Playfair, Laplace, and Galton, devoted much of their effort

to designing and analyzing public data, and, in the 20th century, statistics was associated

with Gallup polls, economic and military organization (Five Year Plans and all that), and

even Svengali-like political consultants (as in The 480, a novel from 1964 by the coauthor

of The Ugly American, Fail-Safe, and other Cold War–era bestsellers). More recently, TV

viewers have become accustomed to colored maps and charts of the latest polls and election

results broken down by locality and demographic slices. And at the next level of sophistica-

tion are USA Today, the New York Times, and blogs such as FiveThirtyEight.com.

This chapter gives some examples where data visualization has increased our understand-

ing of politics, along with a discussion of the factors involved in making each choice. Here

we are focusing on the uses of graphics for research as well as presentation.

We try to apply the following template:

• “Figure X shows…”

• “Each point (or line) in the graph represents…”

• “The separate graphs indicate…”

324 C H A P T E R N I N E T E E N

• “Before making this graph, we did…which didn’t work, because…”

• “A natural extension would be…”

We do not have a full theory of statistical graphics—our closest attempt is to link explor-

atory graphical displays to checking the fit of statistical models (Gelman 2003)—but we

hope that this small bit of structure can help readers in their own efforts. We think of our

graphs not as beautiful standalone artifacts but rather as tools to help us understand beau-

tiful reality.

We illustrate using examples from our own work, not because our graphs are particularly

beautiful, but because in these cases we know the story behind each plot.

Example 1: Redistricting and Partisan Bias
Figure 19-1 shows the estimated effect on partisan bias from redistricting (redrawing of

the lines dividing the districts from which legislators get elected). Each point in the graph

represents a state legislative election year (such as Missouri in 1972), with the vertical and

horizontal axes displaying an estimate of partisan bias in that election and in the previous

election, two years earlier.

F I G U R E 1 9 - 1 . Effect of redistricting on partisan bias. Each symbol represents a state election year, with dots indicating

controls (years with no redistricting) and the other symbols corresponding to different types of redistricting. As indicated

by the fitted lines, the “before” value is much more predictive of the “after” value for the control cases than for the treated

(redistricting) cases. The dominant effect of the treatment is to bring the expected value of partisan bias toward 0, and this

effect would not be discovered with the usual approach, which is to fit a model assuming parallel regression lines for

treated and control cases. This graph is just beautiful enough to reveal the key pattern in the data.

0

0 0

0

0X

X
X
X

X
X

X

X
X

X

0

0

(favors Democrats)

(favors Republicans)

Estimated partisan bias in previous election
–0.05 0.0 0.05

Es
ti

m
at

ed
 p

ar
ti

sa
n

b
ia

s
(a

d
ju

st
ed

 fo
r s

ta
te

)

–0.05

0.05

0.0

no redistricting

Dem. redistrict
bipartisan redistrict
Rep. redistrict

B E A U T I F U L P O L I T I C A L D A T A 325

“Partisan bias,” as defined here, is a measure of how much the electoral system favors the

Democrats or Republicans, after accounting for their vote share. Roughly speaking, the

partisan bias is the expected Democratic share of the seats won in the legislature, if they

were to average 50% of the vote. Biases are typically between –5% and 5%, implying that

a party that wins half the vote for a state legislature will win between 45% and 55% of the

seats.

The small dots in the graph represent “control” cases in which there was no redistricting,

and the larger symbols correspond to different kinds of redistrictings, which here we lump

together as “treated” cases. Elections come every two years, and redistricting typically

happens every 10 years, so most of the data points are controls. The correlation between

before and after measurements is much larger for controls than treated cases. The differ-

ence in slopes for the two groups should be no surprise at all. In the control cases with no

redistricting, the state legislature changes very little, and so the partisan bias will probably

change very little from the previous election. In contrast, when the legislative districts are

redrawn, larger and more unpredictable changes occur. It was crucial to model the varia-

tion in the treatment to see this effect.

The simplest way to get partisan bias from redistricting is for Democrats, say, to draw the

district lines so that they are winning with 60% of the vote in each of their districts, with

Republicans packed together so that they are winning their seats with close to 100% of the

vote. However, such manipulation (“gerrymandering”) may not be possible in practice,

given constraints including equal population and contiguity of districts, as well as the

potential for egregious gerrymanders to be overturned in court challenges.

The graph in Figure 19-1 is beautiful because, until we made it (in Gelman and King

1994), the discussion of partisan redistricting had focused on whether or not parties could

make large gains and whether districting reduced the competitiveness of the electoral sys-

tem (because legislators who are drawing the district lines can try to preserve “safe seats”

for themselves and their colleagues).

In our first attempt to use this data to model the consequences of redistricting, we fit a lin-

ear regression model with no interaction—thus completely missing the most important

part of the story. It was only after plotting the data and the fitted regression line that we

noticed the elephant in the room and fit a more appropriate model.

Our graph showed that the main consequence of redistricting was to reduce the magni-

tude of partisan bias (and also to make the electoral system more responsive to voters, but

that is the subject of a different graph, not shown here).

326 C H A P T E R N I N E T E E N

Example 2: Time Series of Estimates
Figure 19-2 illustrates a problem with classical logistic regression (a standard statistical tool

for predicting yes/no outcomes) and how it can be resolved using a so-called weakly infor-

mative Bayesian approach. Using polling data in each presidential election from 1952

through 2000, we fit a separate logistic regression model to each year’s data, predicting

Republican vote choice given race, income, and several other variables.

Within each of the little graphs, each dot displays a logistic regression coefficient with a ver-

tical line indicating the uncertainty in the estimate. The series of dots shows separate esti-

mates for each election, and the two rows of graphs show the time series of estimated

coefficients for race and income. (For simplicity, we do not display the other coefficients

here.) The left column of the display shows classical estimates, and the two right columns

show different Bayesian estimates (which in this case give essentially identical answers).

The estimates in Figure 19-2 look fine except in 1964, where there is complete separation,

with all black respondents supporting the Democrats. As a result, the coefficient for race is

estimated at negative infinity—that is, an inference that being black results in a 0%

chance of voting Republican that year. 1964 was indeed a year in which Republicans did

not do well among black voters (the Republican candidate that year was Barry Goldwater,

who had opposed the Civil Rights Act), but they certainly received more than 0% of the

black vote. The purpose of this regression, as in nearly all survey analysis, is to draw con-

clusions about the general population, not merely the small sample surveyed, and, as

such, we cannot be satisfied with the classical estimate of negative infinity. (The estimate

displayed in the left column of Figure 19-2 is not actually infinite, but that is because the

software used to fit the model is iterative and stopped at some point before diverging.)

The Bayesian approach, as shown in the rightmost two columns of Figure 19-2, stabilizes

the coefficient for black voters in 1964 at a reasonable value—lower than in any other

year from 1952–2000 and with a larger uncertainty bound but not infinite. While fixing

this problem, the Bayesian procedures did not mess up the coefficient estimates for other

years or for other variables in the model (as illustrated by the coefficients for income in

the second row of plots).

This graph is hardly beautiful, but it illustrates an important and general principle, which

is that graphing isn’t just for raw data. The usual practice in the statistical literature is to

display this sort of result in a table, but a well-made graph can show more information in

less space (Gelman et al. 2002).

From our own perspective, the graph of parameter estimates was useful both for convey-

ing to others the effectiveness of our method and to reassure ourselves that our series of

estimates was reasonable, in a way that a table of coefficient estimates (or, more typically,

a long series of computer output) would not.

B E A U T I F U L P O L I T I C A L D A T A 327

F I G U R E 1 9 - 2 . The left column shows the estimated coefficients (±1 standard error) for two predictors in a logistic

regression predicting probability of Republican vote for President given demographics, as fit separately to data from the

National Election Study for each election 1952 through 2000. The numerical variable income (originally on a 1–5 scale)

has been centered and then rescaled by dividing by two standard deviations. There is complete separation in 1964 (with

none of the African-American respondents supporting the Republican candidate, Barry Goldwater), leading to a

coefficient estimate of –1 that year. (The particular finite values of the estimate and standard error are determined by the

number of iterations used by glm function in R before stopping.) The other two columns show Bayesian estimates for the

same model using different “weakly informative” prior distributions. The Bayesian inferences fix the problem with 1964

without doing much to the estimates in the other years.

The beauty of this graph, and others like it, is that its strict parallelism (the “small multiples” idea discussed by Tufte, 1990,

and Bertin, 1967) allows the reader—and also the creator of the graph—to make many comparisons at once.

Cauchy prior
Coef for black

1952
1968

1984
2000

Year

–15 –8 0

Coef for income

1952
1968

1984
2000

Year

0.0

0.3

0.6

t7 prior

Coef for black
1952

1968
1984

2000

Year

–15 –8 0

Coef for income

1952
1968

1984
2000

Year

0.0

0.3

0.6

Norm
al prior

Coef for black

1952
1968

1984
2000

Year

–15 –8 0

Coef for income

1952
1968

1984
2000

Year

0.0

0.3

0.6

glm

Coef for black

1952
1968

1984
2000

Year

–15 –8 0

1952
1968

1984
2000

Year

Coef for income0.0

0.3

0.6

328 C H A P T E R N I N E T E E N

Example 3: Age and Voting
Immediately after Barack Obama’s historic election, there was speculation about the role

of young voters in the winning coalition. Exit poll data showed that Obama did particu-

larly well among the young, but was this really newsworthy? For example, political con-

sultant Mark Penn wrote on the New York Times website, “Sure, young people voted

heavily for Mr. Obama, but they voted heavily for John Kerry.” Was Penn right?

As always, the clearest way to make a comparison is using a graph. Figure 19-3 shows the

results, with four versions: first the basic graph that we made on election night (pulling

exit poll data off the CNN website), then an improved version posted by a student who

had noticed our graph on the Web, then to more time series plots of our own. In each of

these graphs, points are connected with lines, with points representing the Republican

candidate’s share of the two-party vote among each of four different age groups in several

recent elections. 2008 clearly was different, and so Mark Penn was wrong—another case

of a pundit looking at numbers and not seeing the big picture. This is what graphics is all

about: showing the details and the patterns all at once.

To get to the even larger picture, there is a huge amount of research in this area, and we

do not mean to imply that these graphs, which reveal some simple patterns, are in any

sense a replacement for more serious study of patterns of age cohorts and voting over

time.

Example 4: Public Opinion and Senate Voting on Supreme
Court Nominees
Few decisions made by U.S. senators are as visible to the public as votes to confirm or

reject a Supreme Court nominee. Whereas the outcomes of many Senate votes, such as

spending bills or the modification of a statute, are ambiguous or obscured in procedural

detail, the result of a vote on a Supreme Court nomination is stark: either the nominee is

confirmed, allowing her to serve on the nation’s highest court, or she is rejected, forcing

the president to name another candidate (Kastellec et al. 2008). Do senators follow state-

level public opinion when casting such votes?

Figure 19-4 presents a preliminary answer to this question by graphing the relationship

between state-level public opinion on nine recent Supreme Court nominees and senators’

votes on whether to confirm those nominees. On each graph, the curve shows the proba-

bility that a senator votes to confirm the nominee as a function of public opinion in the

senator’s state. The solid black line displays the estimated curve from a fitted logistic

regression, and the clusters of light-gray lines depict uncertainty in this estimation. The

hash marks (or “rugs”) indicate votes of approval (“1”) and rejection (“0”) of nominees,

while the numbers in the lower-right corner of each plot denote the overall vote tally by

the Senate. The bottom plot pools all nominees together. We order the plots across and

down by increasing mean support for each nominee.

B E A U T I F U L P O L I T I C A L D A T A 329

The graph shows that the relationship between public opinion and confirmation is gener-

ally positive, though it varies across nominees. Not surprisingly, there is greater uncer-

tainty for nominees with lopsided confirmation votes. At the same time, the plot for “All

Nominees” shows that, in general, as state public support for a nominee increases, a sena-

tor is more likely to vote yes. (This relationship holds even if one controls for other predic-

tors of roll call voting, such as nominee quality and ideological distance between the

senator and the nominee.)

The beauty of this graph is that it combines raw data with a simple inferential model in a

single plot. Typically, bivariate relationships are presented in tabular form; in this exam-

ple, doing so would require either nine correlation coefficients or regression coefficients

and standard errors from nine regression models, which would be ungainly, make it diffi-

cult to visualize the relationship between opinion and voting for each nominee, and create

difficulties in making comparisons across nominees. The only actual numbers we include

F I G U R E 1 9 - 3 . Some graphs showing recent patterns of voting by age. The top-left graph shows my first attempt, created on

election night based on immediate exit poll data. The top-right graph was created by Hober Short, a student who saw my graph

on the Web and made his own, displaying time on the x-axis. The lower-left graph is my cleaned-up version of Short’s graph,

labeling all four age categories directly on the lines of the graph. All these graphs show the dramatic difference between 2008

and the two previous elections. Finally, the lower-right graph extends the data back to 1988, showing that Bill Clinton in 1996

also did well among young voters—like Barack Obama, he was a young Democrat facing older Republican opponents—but

not so well as Obama in 2008.

These graphs show the choices involved in making even the simplest possible graphs. As in many political settings, the

largest gains come from incorporating additional data—in this case, the comparison of 2008 with earlier years, the

comparison of young voters with those of other ages, and the comparison of the three other age groups with one another

(with the lack of variation in this last comparison being a motivation to focus on trends among young voters in particular).

In addition, we improved our final graph by focusing on Democratic rather than Republican vote (more appropriate given

the focus on Obama’s strength among young voters) and by giving the graph a more descriptive title.

The youth vote and everybody else

Age

2008

2004

2000

R
ep

u
b

li
ca

n
vo

te
 s

ha
re

30%

50%

40%

25 45 65

Year

The youth vote and everybody else

2000 2004 2008

R
ep

u
b

li
ca

n
vo

te
 s

ha
re

30%

50%

40%

Age 65+

Age 45–64
Age 30–44

Age 18–29

The youngest voters swung to the Democrats

Year

Age 45–64
Age 65+

Age 30–44

Age 18–29

D
em

oc
ra

ti
c

sh
ar

e
of

th
e

tw
o-

p
ar

ty
 v

ot
e

50%

70%

60%

1988 1992 1996 2000 2004 2008

Year

The youth vote vs. everybody else

2000 2004 2008Pe
rc

en
ta

ge
 v

ot
in

g
R

ep
u

b
li

ca
n

0

50

40

30
20

10

25 year olds

45 year olds

65 year olds

330 C H A P T E R N I N E T E E N

in the plot (which we do in an unobtrusive manner that does not distract from the plots

themselves) are the roll call margins, which are both easily interpretable and give the

reader a sense of how contentious each nomination was. Finally, as with Figure 19-2, the

use of small multiples in the display allows the reader to make several comparisons at

once, and prevents the information overload that can occur with a single plot.

Example 5: Localized Partisanship in Pennsylvania
In 1986, political strategist James Carville, who later ran Bill Clinton’s first presidential

campaign, described Pennsylvania as Paoli and Penn Hills with Alabama in between. Paoli

is a suburb of Philadelphia, and Penn Hills is a suburb of Pittsburgh, and so Carville was

referring to the two urban centers of this long-standing “swing state” as Democratic

strongholds, with the remaining rural areas of the state as Republican territory.

F I G U R E 1 9 - 4 . Correlation between state opinion and Senate roll call voting on Supreme Court nominees. For each

nominee, the black line depicts the estimated logit curve from regressing senators’ votes on state public opinion. Light-

gray lines depict uncertainty in the estimates. Hash marks indicate votes of approval (“1”) and rejection (“0”) of nominees,

while the numbers in the lower-right corner of each plot denote the overall vote tally by the Senate. The bottom plot pools

all nominees together. The beauty of this graph is that it combines raw data with a simple inferential model in a single

graph.

40 45 50 55 60 65
0

.25

.5

.75

1
Bork

42−58

45 50 55 60 65 70
0

.25

.5

.75

1
Rehnquist

65−33

55 60 65 70 75 80
0

.25

.5

.75

1
Alito

58−42

60 65 70 75
0

.25

.5

.75

1
Thomas

52−48

60 65 70 75 80 85
0

.25

.5

.75

1
Roberts

78−22

65 70 75 80 85 90
0

.25

.5

.75

1
Souter

90−9

70 75 80 85
0

.25

.5

.75

1
Ginsburg

96−3

70 75 80 85 90
0

.25

.5

.75

1
Breyer

87−9

88 90 92
0

.25

.5

.75

1
O'Connor

99−0

Pr
(V

ot
in

g
Ye

s)
Pr

(V
ot

in
g

Ye
s)

Pr
(V

ot
in

g
Ye

s)

State Support for Nominee State Support for Nominee

40 50 60 70 80 90
0

.25

.5

.75

1
All Nominees

Pr
(V

ot
in

g
Ye

s)

State Support for Nominee

B E A U T I F U L P O L I T I C A L D A T A 331

Carville’s words are indicative of the broader desire of both the public and the highest

level of political punditry to divide the country into red and blue areas. For most Ameri-

cans with an even passing familiarity with elections in the 21st century, one of the defin-

ing images of recent American politics has been the ubiquitous electoral map from 2000

and 2004, featuring slivers of blue states along the north and west coast, and a sea of red

states in the south and the heartland. Despite President-elect Barack Obama’s insistence

that we are not a collection of red and blue states, this salient imagery is difficult to

overcome.

Figure 19-5 presents a clarification of sorts for Carville’s description of Pennsylvania and a

different way of looking at geographic partisanship, based on a new and exciting type of

data and a rich visualization technique. The bottom layer of the map shows Pennsylvania

counties shaded by their 2004 presidential election returns, with blue indicating higher

support for the Democratic candidate John Kerry, red indicating higher support for the

Republican candidate George W. Bush, and shades of purple in between. By using the

continuous red-purple-blue scale instead of the more common solid red or solid blue indi-

cating each county’s winner, we can better visualize the varying degrees of partisanship

across the state.

The top layer of the map—the scattered cylinders—displays localized partisanship for a ran-

dom sample of 4,000 registered voters in the state. Localized partisanship is a measure of

the concentration of Democrats or Republicans in each neighborhood. Specifically, it is

F I G U R E 1 9 - 5 . Geographic partisanship in Pennsylvania. The base layer shows Pennsylvania counties shaded by their

2004 presidential election returns, with blue indicating higher support for the Democratic candidate John Kerry, red

indicating higher support for the Republican candidate George W. Bush, and shades of purple in between. The scattered

cylinders represent localized partisanship for 4,000 random registered voters in the state, defined as the percentage of

people living within a 1-mile radius who are registered Democrats. Each cylinder is located on the voter’s household and

has a radius of 1 mile, thus replicating the region for the partisanship measure. Again, blue cylinders indicate highly

Democratic regions—this time with regard to individual-level registration—red cylinders indicate highly Republican

regions, and shades of purple indicate regions in the middle. The beauty of this graph is that it reveals complexity in the

idea of red and blue regions of the country, of individual states, and even of individual counties. (See Color Plate 69.)

332 C H A P T E R N I N E T E E N

defined as the percentage of people living within a 1-mile radius who are registered Dem-

ocrats. Each cylinder is located on the voter’s household and has a radius of 1 mile, thus

replicating the region for the partisanship measure. Again, blue cylinders indicate a highly

Democratic region—this time with regards to individual-level registration—red cylinders

indicate a highly Republican region, and shades of purple indicate regions in the middle.

The beauty of this graph is that it reveals complexity in the idea of red and blue regions of

the country, of individual states, and even of individual counties. Although it is sometimes

convenient to think of red and blue states, this graph reveals that there are shades of purple

going down to the neighborhood (and even the individual) level. Just outside Philadelphia,

the biggest city in the state, you can easily find pockets of red neighborhoods. Conversely,

even in the reddest counties in the middle of the state, there are areas of purple and blue.

The graph is also beautiful because it demonstrates how our commonly held beliefs can be

challenged and our understanding can be deepened through the careful analysis and visu-

alization of data. This particular graph uses data provided by Catalist, a company that

maintains a national database of all voting-age individuals in the United States. As detailed

and large-scale data sources become increasingly accessible, multilayered visualization

techniques will be instrumental in our abilities to use data to understand the world

around us.

Conclusion
Political data is increasingly accessible and is increasingly being plotted and shared in the

media and on the Web. At the research level, articles in political science journals are start-

ing to make use of graphical techniques for discovery and presentation of results. And

online tools ranging from NationMaster.com to the Name Voyager (http://www.

babynamewizard.com/voyager) are becoming increasingly accessible, with data dumps such

as Hans Rosling’s TED talk (http://www.ted.com/index.php/talks/hans_rosling_shows_the_best_

stats_you_ve_ever_seen.html) becoming cult favorites. We expect statistical visualization to

become more important and more widespread in political analysis.

References
Bertin, J. (1967). Semiology of Graphics. Translated by W. J. Berg (1983). Madison: Univer-

sity of Wisconsin Press.

Gelman, A. (2003). “A Bayesian formulation of exploratory data analysis and goodness-

of-fit testing.” International Statistical Review 71, 369–382.

Gelman, A., A. Jakulin, M. G. Pittau, and Y. S. Su (2008). “A weakly informative default

prior distribution for logistic and other regression models.” Annals of Applied Statistics, to

appear.

Gelman, A. and G. King (1994). “Enhancing democracy through legislative redistricting.”

American Political Science Review 88, 541–559.

http://www.babynamewizard.com/voyager
http://www.babynamewizard.com/voyager
http://www.ted.com/index.php/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html
http://www.ted.com/index.php/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html

B E A U T I F U L P O L I T I C A L D A T A 333

Gelman, A., C. Pasarica, and R. Dodhia (2002). “Let’s practice what we preach: turning

tables into graphs.” American Statistician 56, 121–130.

Kastellec, J., J. Lax, and J. Phillips (2008). “Public opinion and Senate confirmation of

Supreme Court nominees.” Technical report, Department of Political Science, Columbia

University.

Tufte, E. R. (1990). Envisioning Information. Cheshire, CT: Graphics Press.

335

Chapter 20 C H A P T E R T W E N T Y

Connecting Data
Toby Segaran

EVERY YEAR, PEOPLE INVENT DOZENS OF NEW OR REFINED STATISTICAL AND MACHINE-LEARNING TECHNIQUES

for combing through data sets. What almost all of these have in common is that they pre-

suppose the existence of a clean data set containing all the information that will be needed

for the task at hand, which is often lacking in real-world situations. As Andreas Weigend,

former chief scientist at Amazon, put it, “People are always asking ’what great technique can

I use on this data set?’ when they should be asking ‘what’s the best data set I can get?’”

Meanwhile, scientists are generating terabytes of data every day through their research

and experiments and putting it online; governments all over the world are allowing down-

loads of data they have collected in operations; and the proliferation of user-generated con-

tent has created massive databases of restaurants, science fiction novels, and geolocations

of streets where there was simply no comprehensive data before. So much of this is avail-

able and sits unused except by a few specialists for whom it is sufficient on its own—for

everyone else it remains upsettingly free of the one or two pieces of context that would

make it 10 times more valuable.

I believe some of the biggest challenges and opportunities for the current generation of

data wranglers lie in connecting disparate data sets to create new sets for analysis, and in

taking advantage of the proliferation of data, new techniques that have been developed,

and the incredible hardware resources available. Data integration has been a problem

336 C H A P T E R T W E N T Y

since databases have existed, but the amount of potentially relevant data available to a

researcher or curious individual is now thousands of times larger—the problem has

moved from enterprise to mainstream.

To me, this is a big, hairy, important problem, and one that’s touched almost every aspect

of my career. So rather than talk about a single project, I’m going to break with most of

the essays in this book and talk about a series of lessons I learned from projects spanning

several years.

What Public Data Is There, Really?
In my work on Freebase (http://www.freebase.com), I’ve looked at hundreds of data sets that

were interesting on their own, but even more interesting as augmentation and context for

other data sets. These come from nonprofits, governments, companies, and grassroots

efforts. Lest I be accused of glossing over details, here’s a pretty big list (but a very small

sample) of what’s out there:

• The Center for Responsible Politics (http://opensecrets.org) publishes contributions by

individuals to political candidates in the United States.

• Many countries have data from their Census available online. In the United States,

you can download census data from http://www.census.gov.

• The Geonames (http://www.geonames.org) database has the longitude, latitude, contain-

ment, and class of named places all over the world.

• The Securities and Exchange Commission (http://sec.gov) has downloadable financial

data for all companies listed on U.S. stock exchanges.

• Agencies like the Environmental Protection Agency (http://epa.gov) have down-

loadable information about environmental pollution in certain places and the facilities

that produce the most pollution.

• A surprisingly useful resource is the Trademark database (http://uspto.gov), which can

be used to find which companies own rights to brand names, what the brand names

are used to sell, and, often amusingly, all the art associated with different brands.

• Many social networks allow downloads of subsets of information, including relation-

ships and other fields such as location.

• Nutritional information (calories, grams of fat, etc.) about almost every consumable

product is available from the U.S. Department of Agriculture (http://usda.gov).

• The National Center for Biotechnology Information (NCBI; http://ncbi.nlm.nih.gov) pub-

lishes many databases related to genetic and medical informatics, including Genbank,

Pubmed, Gene, and dbSNP.

• Many city or state health departments publish data about restaurant inspections,

which is a good source of free data about which restaurants are in a city and also how

clean they are.

http://www.freebase.com
http://opensecrets.org
http://www.census.gov
http://www.geonames.org
http://sec.gov
http://epa.gov
http://uspto.gov
http://usda.gov
http://ncbi.nlm.nih.gov

C O N N E C T I N G D A T A 337

• Agencies such as Medicare (http://medicare.gov) and the Food and Drug Administration

(http://www.fda.gov) have huge downloadable data sets of drug availability, costs, and

usage.

• Online message boards often contain mentions of companies, products, and places,

along with text that can be mined for sentiment and relationships.

You’ll notice that although a lot of these sources come from totally different places, they

often talk about very similar things. This is the essence of the problem I’m exploring—how

do we know when two databases are talking about the same thing? As you’ll see in the

rest of this chapter, this is a difficult problem, but one whose solution brings about many

exciting possibilities.

The Possibilities of Connected Data
Back in the 1980s, I watched a movie called Wall Street, and one scene always stuck with

me: a young stockbroker played by Charlie Sheen gives a very prescient stock tip to his

future mentor, played by Michael Douglas. After the tip proves to be accurate, we see

Douglas telling Sheen that he knows that the head of the union at the company is Sheen’s

father. The implication is that he has researchers who can find connections between peo-

ple and companies, but at the time it got me thinking about what connected data could do.

Of course, in this context it sounds a little creepy, but this is exactly the sort of research

that agencies like the Securities and Exchange Commission (SEC) have to do manually in

order to detect fraud and insider trading. Setting privacy concerns and personal data like

family connections aside for a moment, consider what would happen if public data from

hundreds of sources could be combined and we could search for connections between

things. What would we find?

Here are a few off-the-cuff ideas to inspire you. Chances are, you’ll have no interest in

implementing these exactly, but hopefully they’ll lead you to your own connected-data

ideas.

Using trademark data, we can determine which companies are responsible for different

brands, which we might combine with nutritional data from the USDA to determine

which companies make the most sugary beverages. We could also take the classification of

the logos from the trademark data to see whether cartoons are more often used to sell

high-calorie products. Introducing still more data, we could use EPA data to figure out

how much pollution companies produce in different places and how well this correlates

with the types of products they sell.

By combining a geographical database such as Geonames with a social network, we could

determine how much people’s locations and the distances between them affect their like-

lihood of being friends. Linking this up with census data could tell us if this is affected by

the size or demographics of their locations (do people in small towns tend to be more

tight-knit? Does a high unmarried population correlate with more social network use?).

http://medicare.gov
http://www.fda.gov

338 C H A P T E R T W E N T Y

On the politics side, we could combine data from the SEC about which companies are in

which industries with data from Center for Responsible Politics (CRP) about political con-

tributions. This would let us determine which industries donate the most to which politi-

cal parties. Figure 20-1 shows a couple of pie charts I made demonstrating this particular

data mashup.

I haven’t even touched things like linking stock prices to sentiment analysis of message

boards, trying to tie together genetics and drug data, or determining whether restaurants

in low-income neighborhoods are dirtier (according to the health inspector), but this

should give you just a small taste of what’s possible when different data sources are con-

nected. Unfortunately, the difficulty of automatically connecting sets ranges from nontrivial

to nearly impossible. In the last example we took data from the CRP, which lists compa-

nies by name, but to find companies in the SEC database we need something called a Cen-

tral Index Key (CIK). Further, companies like Exxon Mobile aren’t always classified as

“Energy” companies but more specifically as “Petroleum Mining” companies, so in order

to find all the Energy companies, we need an established hierarchy of which industries are

subsets of other industries.

Within Companies
We can think of integrating data across the Web as the big challenge, but microcosms of

this challenge appear everywhere. It’s especially striking (at least it was to me, when I first

noticed it) how often large companies have several databases all referring to the same

items and no way to query across them or even make employees aware that data about

their area of interest exists in a database maintained by a coworker. This is often called the

“information silo problem,” referring to the fact that information is cleanly separated and

largely inaccessible—like grain in a silo (yes, I always thought that metaphor was a bit of a

stretch).

This problem was clearly noticeable when I worked in the biotech industry and spoke

with people at many pharmaceutical companies about their data integration challenges. In

many cases, the management structure of companies is divided into therapeutic areas

(areas focused on a family of diseases). People in these groups might be working on a par-

ticular set of target proteins to hit with a drug or looking for genetic markers to predict

whether a drug would work or not, all the time conducting expensive experiments and

building up large sets of knowledge on these genes, proteins, and compounds.

F I G U R E 2 0 - 1 . Pie charts resulting from a data mashup of SEC industry data and Center for Responsible Politics

political contribution data. (See Color Plate 70.)

C O N N E C T I N G D A T A 339

At the same time, people in different parts of the company, or perhaps previous research-

ers on a long-since-finished project, were often studying or had studied the same or very

similar genes, proteins, and compounds. Researchers on each project often had no way to

take advantage of data that had been generated in different projects, so would miss impor-

tant insights and wastefully replicate experiments.

Think for a moment about why this is the case: even assuming that everyone had agreed

on a schema and a mechanism for querying, there’s no guarantee that people would use

the same nomenclature to describe their experiments. What are the correct fields to use?

And how do you search for, say, a “lung cancer” experiment when another researcher

might have described it as an “adenocarcinoma”? Many working groups have emerged to

try to create a controlled vocabulary and fixed schema to make experiments easier to find,

but so far none have completely cracked this problem.

Biotech is actually way ahead of the game, having at least identified the problem and

made serious industry-wide attempts to solve it. At the other end of the spectrum, we’ve

recently had spectacular failures of investment banks all over the world where no one had

any idea what positions their traders held, and traders themselves had no way of knowing

whether they held an opposing position to someone sitting across the room. And if too lit-

tle data connection is a problem, connecting things that shouldn’t be connected can be an

even bigger problem. For example, governments have given us several high-profile cases

of people being misidentified as terrorists or banned from flying simply because they had

the same name as a known suspicious person.

This is, of course, not restricted to large companies or industry-specific information. Even

small companies have problems keeping client and employee records consolidated.

Impediments to Connecting Data
Hopefully you’re starting to be convinced that there are huge advantages to being able to

easily integrate data from many different sources. But there are a few different reasons

people aren’t doing it already….

The Representation Problem

Perhaps the most basic problem with attempting to connect data sets is the fact that most

data is stored in very inflexible structures. First of all, a surprising amount of important

data in science and business is also kept in Excel spreadsheets, which are stored locally on

people’s computers, inaccessible to others and also not designed for integration anyway.

Even in companies where databases are made accessible, data is classically stored in rela-

tional databases, most of which have predefined schemas to fit the data that was initially

believed to be important. Figure 20-2 shows a simple example of a relational schema for

restaurant data. This is excellent for large, predictable data sets because relational data-

bases have excellent performance when well configured, but presents problems when

the application requires new kinds of data, new fields, or new relationships to be added

frequently.

340 C H A P T E R T W E N T Y

I’ve seen people solve this problem in a number of ways, but two really stand out, mostly

because they’re opposite ends of a spectrum. The traditional approach is to continually

refactor the database, adding new tables, new fields to existing tables, and new indices and

connections between tables. This means constant migration of the data to the new

schema, a process that can be expensive, disruptive, and slow (space considerations

restrict me from going through examples here, but I get a lot of knowing nods whenever I

give talks on this subject). It also leads to increasingly complex schemas that eventually

become extremely difficult to visualize and interpret.

The other approach I’ve seen is to simply build a very basic schema that can support any

type of data. The typical way to do this is to have a table of entities and a table of relation-

ships, something like what’s shown in Figure 20-3.

This has the advantage of letting developers and data loaders add new kinds of relation-

ships to the data on the fly. Essentially it represents data as a graph instead of a set of

tables. Figure 20-4 shows a restaurant represented in a graph along with a lot of extra data

that one could easily add later.

Unfortunately, relational databases are not designed to store data in that manner, and

to do any useful queries on that schema will require a lot of self-joins and be very slow.

F I G U R E 2 0 - 2 . A relational schema for restaurant data.

F I G U R E 2 0 - 3 . A basic schema.

Restaurant
id
name
address
cuisine_id

Hours
restaurant_id
day
open
close

Cuisine
id
name

Object
id
name

Relationship
name
fromID
toID
toString

C O N N E C T I N G D A T A 341

Since this is such a common pattern, many commercial and open source “graph data-

bases” have appeared in recent years, specifically designed to store data like this. A few

examples are:

Sesame (http://openrdf.org)

An open source graph database maintained by the Dutch software company Aduna

Jena (http://jena.sourceforge.net)

Another open source graph database developed by Hewlett Packard

AllegroGraph (http://agraph.franz.com)

A more feature-rich commercial graph database developed by Franz

Neo4J (http://neo4j.org)

An open-source graph database with commercial licensing options

Although they represent a significant shift in data modeling and development practices,

graph databases are much more flexible when it comes to connecting data from many

sources. For this reason, they’ve been getting a lot more attention lately as people start to

consider “scaling to complexity” in addition to scaling to size. Sadly, this is among the sim-

plest of the problems we face when connecting data—it gets a lot worse from here.

Shared Nouns and Shared Verbs

Even assuming you have a nice graph or perfectly suitable relational schema in which to

merge two databases, how do you know which items actually match each other? One

database may list “Coca-Cola,” which is the same as “The Coca-Cola Company” listed in

another, or less trivially, “Coke” (but which, let it be noted, is not the same as “The Coca-

Cola Bottling Company,” which is separate and distinct).

To make matters even worse, there’s nothing close to consistency in the way people name

fields or object properties, either. In one database, the address of a restaurant might be in

the address field and in another the location field. How can we tell that location when it’s a

property on a restaurant means the same thing as address, but location when used to

describe a gene sequence means its position on a chromosome? In practice, this is usually

F I G U R E 2 0 - 4 . Graph database of restaurant data, leaving room for expansion.

Chinese

Peking Inn

Scorpion Bowl

Downtown Wellington, NZ

cuisine location contained-by

name namename

best drink

S2 S6 S7

http://openrdf.org
http://jena.sourceforge.net
http://agraph.franz.com
http://neo4j.org

342 C H A P T E R T W E N T Y

a manual process, but if we expect to build systems that can easily integrate hundreds or

thousands of databases, we need to find ways to eliminate a lot of the manual work

involved in such integrations.

Various efforts to resolve these naming problems have been attempted. In the Semantic

Web community an effort called “Linked Open Data” has emerged, wherein people are

encouraging one another to refer to specific objects (like a movie, a person, or a restau-

rant) by a standard Universal Resource Indicator (URI), so everyone knows when two

people are talking about the same thing. There have also been several efforts to standard-

ize on a set of ontologies, which describe what fields should be used to describe things like a

restaurant or a movie in all cases.

So far, however, the number of groups that have agreed to use the same URIs to refer to

things and the same ontologies to describe them is an exceedingly small fraction of all the

free online databases out there, and covers almost none of companies’ private databases.

In many cases, even those trying to participate in the linked open data efforts aren’t cur-

rently using the same URIs for things that clearly are the same thing.

Which means, for those of us trying to connect data sets, we’re going to have to devise

ways to automatically determine whether two things are the same.

The Same Thing with Different Names

Like many people, when I first started trying to connect data sets, I thought a nice first-

order assumption was that the best way to determine if two items were the same thing

was if they had the same name. I even thought I could cleverly get around problems like

“Coca-cola” and “The coca-cola company” by using tricks like string distance or substring

matching. This works much of the time, but often fails in the most interesting cases—the

ones you care most about.

A simple example I came across when attempting to combine movie data from Wikipedia

with movie data from Netflix was Prêt-à-Porter. This French name is the one used in Wiki-

pedia (despite the fact that this is an American film), but the name in Netflix was the

English Ready to Wear. Before you argue that we should translate every name to English

before making a string comparison, note that there are many films with multiple titles in

the same language, such as B.U.S.T.E.D. and Everybody Loves Sunshine or Point of No Return

and The Assassin—these movies either came out with different names in different countries

or had working titles that were different from their eventual release titles.

So, if we can’t rely on searching for similar strings, how do we match movies? Well, the

principle is simple and the details are fiendishly complex (and the subject of much per-

sonal and academic research). For example, we have two movies, both released in 1994,

both directed by Robert Altman, and both starring Julia Roberts and Sophia Lauren: could

these possibly be two different movies? As it happens, there is exactly one movie with

those characteristics, so any movie with that set of properties—regardless of its name—

must be the same movie. Later in this chapter I’ll discuss how this is detected in practice.

C O N N E C T I N G D A T A 343

As an aside, it turns out that string-distance is a particularly poor way to match movies.

Ghostbusters and Ghostbusters 2 are very similar strings but represent different movies,

which you can easily tell by the fact that one was released in 1984 and the other was

released in 1989. It’s not even possible to assume that numbers following the title refer to

a series of films—The Madness of George III and The Madness of King George in fact refer to the

same film.

Different Things with the Same Name

Failing to recognize that two things are the same is often an irritation, producing dupli-

cates that can be fixed later if necessary. Of far greater consequence is incorrectly deciding

that two distinct items are the same thing because they share a name or some other

attribute that’s really insufficient for identity. The reason this is more dangerous is that

once things in a database become improperly conflated, we start attaching facts about the

separate items to the same thing, and when the error is finally noticed, we have no easy

way to disentangle the facts without a lot of human effort.

There are seven towns in Wisconsin (U.S.) named “Franklin,” only one of which contains

a Wal-Mart. There are at least four books named City of God. And there are at least 50 peo-

ple famous enough to appear in Wikipedia named “John Smith.” Erroneous no-fly lists

aside, it should be clear that having two items with the same name is very weak evidence

that they’re the same thing, especially when it comes to people. Although there are exam-

ples of unique keys for people, like Social Security numbers in the United States, these

almost never appear in publicly accessible databases; unique identifiers for people almost

always end up requiring some level of protection.

Except in very closed sets (names of countries, for example) or for exceedingly rare names

(“Toby Segaran” comes to mind), it’s strongly advisable not to conflate things based on

name alone; algorithms should be designed to use additional evidence to determine

whether two separate records really are the same thing.

I think it’s important to point out here that there have been efforts to create canonical

identifiers for certain things, but this has never been successfully applied to people for pri-

vacy reasons. In the United States we have Social Security numbers that many govern-

ment and credit agencies use to track us, but we’re taught that it’s strongly inadvisable to

share this with anyone, and we’d certainly never put it in a public database just so other

people could link their data to us more easily. Thus we’re permanently stuck with billions

of people with similar names and no other way to identify them.

Possible Solutions
Although it’s important to realize that this remains an unsolved problem in the general

case, there are a number of ideas that people have tried that work in certain circum-

stances. Some of these approaches will be dead ends, but others, when further developed,

seem to have the potential to work on a wide range of data sets.

344 C H A P T E R T W E N T Y

Matching on Multiple Fields

In Chapter 7, “Data Finds Data,” Jeff Jonas describes a hypothetical employee who could

be discovered to also be a shoplifter through a combination of his name and his address. In

that case, a combination of a name and an address is sufficient evidence to suggest that

two different records in fact represent the same person. Jeff would also be quick to point

out that he’s come across cases where a “Patrick Smith” and a “Patricia Smith” shared an

address and both went by “Pat Smith,” so if you’re not careful it’s easy to get trapped in a

maze of exceptions to otherwise obvious rules.

This does illustrate the basic and most common approach to matching items in data sets:

choose a set of parameters and create a set of fixed rules that tell you whether things

match or not. For example, “do two people have the same name and the same address?”

or “do two films have the same name and were released the same year?”

This approach will work in many cases, but it has a few drawbacks. First of all, it requires

the developer to identify the fields and rules by which things match. This can be incredibly

tedious, since when they realize that Prêt-à-Porter doesn’t match Ready to Wear according to

the basic name/year rule, they have to go and invent another rule like “do two films that

came out in the same year have a director and at least one actor in common?”

The second problem is that it requires a high level of consistency in the fields themselves.

What if we didn’t have the actor’s full name? What if the year was missing for some mov-

ies in one of the databases? Finally, because we’re choosing specific fields and creating flat

records, this approach doesn’t take advantage of the full network of data—which has the

potential to give us far more information about identity.

Collective Reconciliation

I believe that taking advantage of the full network of data is the key to solving this matching

problem. The idea is embodied in a series of techniques called collective reconciliation or collec-

tive entity resolution. For a very detailed discussion, I’d suggest reading Indrajit Bhattacharya’s

PhD dissertation, which you can find at http://www.lib.umd.edu/drum/handle/1903/4241.

In this section I’ll take you through a very high-level overview of what collective reconcil-

iation means. The details of how these algorithms are implemented varies greatly depend-

ing on the particular type of data you’re working with, and is well beyond the scope of this

chapter, but my hope is that a high-level overview will both help you experiment and

make it easier for you to read other people’s work on the subject.

First of all, consider that we have two movie data sets, each one containing slightly differ-

ent information. Pieces of two of them, represented as graphs, are shown in Figure 20-5.

We’ve already decided it’s unwise to match things based on name alone, so we can’t just

decide that any two of the objects are the same by just looking at the names. However, we

can say we believe that node10 in graph A might be the same as node22 in graph B because

they’re both named “Julia Roberts,” and that node12 in graph A might be the same as

node27 in graph B because they’re both named “Ready to Wear.”

http://www.lib.umd.edu/drum/handle/1903/4241

C O N N E C T I N G D A T A 345

The trick now is that we have potential matches between items in the two graphs, and

these items share a connection—the potentially matched “Julia Roberts” nodes are con-

nected to the potentially matched “Ready to Wear” nodes. This connection provides more

evidence to both of these matches. Whether it’s conclusive in the general case depends on

a lot of probability assumptions about how likely it is that there are multiple actresses

named Julia Roberts who starred in a movie called Ready to Wear, but in this case we can

consider it to be the right answer.

F I G U R E 2 0 - 5 . Pieces of two different movie databases.

Graph A

actor

actor

actor

actor

director

Graph B

node10
name: Julia Roberts

node12
name: Ready to Wear

node27
name: Ready to Wear
year: 1994

node19
name: Sophia Loren

node19
name: Robert Altman

node29
name: Sophia Loren

node22
name: Julia Roberts

346 C H A P T E R T W E N T Y

The way this is implemented varies, but a popular technique is called message-passing.

Essentially, node12 in graph A, knowing that it might be the same as node27 in graph B,

looks at all the connections in graph B and sends messages to its own neighbors in graph

A. The message to all the actors connected to it could say, “you might be the same as

node22 or node25,” and node10, receiving this, realizes “in fact, I already thought I might be

node22.” At the same time, node10 is doing the same thing, telling node12 all the movies it

could possibly be. Figure 20-6 shows what this might look like.

You can probably see why this is called “collective reconciliation”: rather than flattening

records, we’re actually trying to merge everything at once, and the nodes are helping one

another decide whether to merge or not. This is a trivial example, of course, but consider

the more difficult one shown in Figure 20-7.

Now the names of “Ready to Wear” don’t match, and we don’t even have a name for

node10! How can we possibly know that it’s Julia Roberts? However, we’ve extended the

network out a little bit, with some other films in which Julia Roberts starred and, luckily,

message-passing can be run over many iterations. Maybe you can figure out what a message-

passing algorithm would do? Here’s a rough idea:

1. node11 decides it’s a potential match for node23 because they have the same name.

2. Likewise node15 decides it’s a potential match for node9 (this would obviously go on if

we had more Julia Roberts movies).

F I G U R E 2 0 - 6 . Message-passing between nodes.

Graph A

actornode27

node27
actor director

node10
name: Julia Roberts
(might be node22)

node12
name: Ready to Wear
(might be node27)

node19
name: Sophia Loren
(might be node29)

node19
name: Robert Altman

node29
or

node22

node29
or

node22

C O N N E C T I N G D A T A 347

F I G U R E 2 0 - 7 . A more difficult merging problem.

Graph A

actor

actor

actor

actor

actor actor

actor actor

actor

actor

actor

director

Graph B

node11
name: Pretty Woman

node10
name: Notting Hill

node10
name: ???

node12
name: Pret a Porter

node27
name: Ready to Wear
year: 1994

node19
name: Sophia Loren

node19
name: Robert Altman

node29
name: Sophia Loren

node21
name: Soleil

node22
name: Julia Roberts

node23
name: Pretty Woman

node9
name: Notting Hill

node24
name: Richard Gere

node25
name: Hugh Grant

348 C H A P T E R T W E N T Y

3. node11 sends a message to node10 saying, “you might be node22 or node24.”

4. Similarly, node15 sends a message to node10 saying, “you might be node22 or node25.”

5. node10, upon receiving all these messages, concludes that it’s probably node22, since

that’s what all its messages have in common.

6. Now that node10 has identified itself, it can now send a message to all its connected

nodes (including the ones it received messages from) saying what movies it thinks

they could be.

7. node12 now has messages from node10 and node19 saying, “you might be node23,” so it

can settle on that.

We’ve established that Prêt-à-Porter and Ready to Wear are the same film, despite the fact

that we started with only one named actor in common.

Notice how we took advantage of the whole network of facts to determine identity? This is

the essence of collective reconciliation, and what makes it so powerful. This notion can be

extended even further: in some experiments, I’ve found that you can connect two data

sets of films and actors using only the film release years. The fact that an actor appeared in

films in 12 particular years and costarred with a different actor who appeared in films in a

different set of 8 particular years is often enough to uniquely identify both people.

Of course, the implementation and mathematical details, which can get very tricky, are

outside the scope of this chapter. Implementing custom versions of this technique is left as

a very lucrative exercise for the reader.

Conclusion
By now, most people are aware that almost every field is becoming more reliant on data

analysis for advancement. Where science used to rely primarily on theoretical models

built from few observations, the future seems to be in the collection and mining of mil-

lions of measurements; where retail companies relied heavily on the insights of “trend

spotters,” many now believe that what they should be selling is buried somewhere in the

piles of collected data.

Rather than independently building ever-larger data sets at great expense, I believe the

future lies in taking advantage of the piles of data that have been generated by others,

combining it and mixing it with our own data. Whether it comes from within our own

organizations, nonprofit largesse, or the public domain, there is a lot of money to be saved

and made by reusing and connecting data. Hopefully this essay has inspired you to find

better ways to do just that.

349

Chapter

Contributors

Ben Blackburne is a postdoctoral fellow in the sequence analysis and assembly team at

the Wellcome Trust Sanger Institute.

Jean-Claude Bradley is an associate professor of chemistry and the E-Learning Coordi-

nator for the College of Arts and Sciences at Drexel University. He leads the UsefulChem

project, an initiative started in the summer of 2005 to make the scientific process as trans-

parent as possible by publishing all research work in real time to a collection of public

blogs, wikis, and other web pages. Jean-Claude coined the term Open Notebook Science

to distinguish this approach from other more restricted forms of Open Science. He teaches

undergraduate organic chemistry courses with most content freely available on public

blogs, wikis, games, and audio and video podcasts. He has a PhD in organic chemistry and has

published articles and obtained patents in the areas of synthetic and mechanistic chemistry,

gene therapy, nanotechnology, and scientific knowledge management.

Lukas Biewald is founder and CEO of Dolores Labs, a company making crowdsourcing

easy and reliable. Dolores Labs’ blog (http://blog.doloreslabs.com) is full of fun crowdsourcing

and data visualization experiments. Prior to Dolores Labs, he worked as a senior scientist

at Powerset, and before that he built Yahoo! Japan’s search engine ranking algorithm. He

received a BS in math and an MS in computer science from Stanford University, where he

http://blog.doloreslabs.com

350

worked in the AI Lab and published two papers on machine learning applications. His per-

sonal website is http://lukasbiewald.com/. Lukas is an expert-level Go player.

Brian Cooper is a principal research scientist at Yahoo! Research. Before that, he was an

assistant professor at Georgia Tech, and before that, he completed his PhD at Stanford. His

interests are in building distributed systems and, in particular, distributed systems that do

database-style management and processing of data. At Yahoo! he works on building very

large distributed data storage and processing systems. In previous lives he has worked on

self-adaptive peer-to-peer systems, distributed streaming event processing, reliable distrib-

uted archival data storage, and XML indexing.

Jason Dykes has been designing and developing interactive spatial interfaces for explora-

tion since the early 1990s. He has used a range of flexible technologies for rapid develop-

ment, including Tcl/Tk, SVG/JavaScript, and Processing to develop innovative software

applications and novel views that reveal geographic structure. A senior lecturer in the

giCentre at City University London (http://gicentre.org), he gained a BA in geography from

Oxford University in 1990 and his PhD from the University of Leicester in 2000. Jason is

co-chair of the International Cartographic Association Commission on Geovisualization

and a National Teaching Fellow. He is currently engaged in helping his sons, Iko and Fred,

learn to ride balance bikes.

Jonathan Follett, president and chief creative officer of Hot Knife Design, Inc., is an

internationally published author on the topics of user experience, information design, and

virtual teams. He contributes to A List Apart, Digital Web, and UXmatters, and speaks on

web-related topics for Boston area technology groups. His articles have been translated

into Chinese, Indonesian, Portuguese, Russian, and Spanish. Jon’s visual design work has

garnered several American Graphic Design Awards, a Horizon Interactive Award, and

other industry recognition.

Andrew Gelman is a professor of statistics and political science at Columbia University.

His most recent books are Data Analysis Using Regression and Multilevel/Hierarchical Models

(Cambridge University Press); Red State, Blue State, Rich State, Poor State: Why Americans Vote

the Way They Do (Princeton University Press); and A Quantitative Tour of the Social Sciences

(Cambridge University Press).

Yair Ghitza is a PhD student in political science at Columbia University, specializing in

American politics and quantitative methods. He previously worked for political analysis

firms, including Catalist and Copernicus Analytics.

Rajarshi Guha is a research scientist at the NIH Chemical Genomics Center working on

various aspects of high-throughput screening problems. Prior to this he was a visiting

member of the faculty in the School of Informatics at Indiana University. Over the past

few years he has worked in various areas of cheminformatics and computational drug dis-

covery, ranging from QSAR modeling and algorithm development to software engineering

of toolkits and web service infrastructure for the deployment of cheminformatics methods

and models.

http://lukasbiewald.com/
http://gicentre.org

C O N T R I B U T O R S 351

Alon Halevy heads the Structured Data Management Research group at Google Inc. Prior

to that, he was a professor of computer science at the University of Washington in Seattle.

In 1999, Dr. Halevy cofounded Nimble Technology, one of the first companies in the

Enterprise Information Integration space, and in 2004, he founded Transformic Inc., a

company that created search engines for the Deep Web, which was acquired by Google.

Dr. Halevy is a Fellow of the Association for Computing Machinery, received the Presiden-

tial Early Career Award for Scientists and Engineers (PECASE) in 2000, and was a Sloan

Fellow (1999–2000). He has published over 150 technical papers. He received his PhD in

computer science from Stanford University in 1993.

Jeff Hammerbacher is the vice president of products and chief scientist at Cloudera. Jeff

was an entrepreneur in residence at Accel Partners immediately prior to joining Cloudera.

Before Accel, he conceived, built, and led the Data team at Facebook. The Data team was

responsible for driving many of the statistics and machine learning applications at Face-

book, as well as building out the infrastructure to support these tasks for massive data sets.

The team produced several academic papers and two open source projects: Hive, a system

for offline analysis built above Hadoop, and Cassandra, a structured storage system on a

P2P network. Before joining Facebook, Jeff was a quantitative analyst on Wall Street. Jeff

earned his bachelor’s degree in mathematics from Harvard University.

Jeffrey Heer is an assistant professor of computer science at Stanford University, where

his research focuses on human-computer interaction, interactive visualization, and social

computing. His work has produced novel visualization techniques for exploring data, soft-

ware tools that simplify visualization creation and customization, and collaborative analy-

sis systems that leverage the insights of multiple analysts. He is the author of the prefuse

and flare open source visualization toolkits, currently in use by the visualization research

community and numerous corporations. Over the years, he has also worked at Xerox

PARC, IBM Research, Microsoft Research, and Tableau Software. He holds BS, MS, and

PhD degrees in computer science from the University of California, Berkeley.

Matthew Holm is the consulting creative director for Hot Knife Design, Inc., of Boston,

where he contributes to corporate strategy and specializes in HTML/CSS development as

well as CMS-driven websites. Matt is currently vice-chair of the Computer-Human Inter-

action Forum of Oregon (CHIFOO, the Oregon chapter of the Association of Computing

Machinery’s Special Interest Group on Computer-Human Interaction). In addition to his

work in the online world, Matt is also a professional children’s book author and illustrator;

more than one million copies of his award-winning, critically acclaimed Babymouse graphic

novels (published by Random House) are currently in print.

J. M. Hughes is an embedded systems and software engineer who is particularly fond of

real-time control, data acquisition, and image processing. From 2003 to 2007 he was

responsible for the design, implementation, and testing of the surface imaging software on

the Phoenix Mars Lander. He is currently working on the electronics and control software

for a multiwavelength laser interferometer system that will be used to verify the align-

ment of telescope mirror segments for a NASA project. He lives in Tucson, Arizona, with

his wife and daughter.

352

Jeff Jonas is chief scientist, IBM Entity Analytics Group and an IBM Distinguished Engi-

neer. The IBM Entity Analytics Group was formed based on technologies developed by

Systems Research & Development (SRD), founded by Jonas in 1984 and acquired by IBM

in January 2005. He blogs at http://jeffjonas.typepad.com.

Jonathan P. Kastellec is a professor of politics at Princeton University. His research has

appeared in the Journal of Law, Economics & Organization; the Journal of Empirical Legal Stud-

ies; and Perspective on Politics.

Valdean Klump lives in San Francisco and is a writer at Google Creative Lab.

Aaron Koblin is an artist from San Francisco who is well known for such visual data

projects as Flight Patterns, The Sheep Market, and Ten Thousand Cents. He was director of

technology on the “House of Cards” video and is currently design technology lead at Goo-

gle Creative Lab.

Coco Krumme is a graduate student at the MIT Media Lab. She also works for Metaweb

Technologies in San Francisco.

Andrew Lang is a professor of mathematics at Oral Roberts University. His PhD training

is in the area of quantum field theory in curved spacetime. While remaining active in this

area, he has always enjoyed working collaboratively on interdisciplinary projects ranging

from modeling basketball free throws to the stability of spinning spacecraft under thrust.

His current interests include multidimensional data visualization, the relationship

between science and science fiction, and the epistemological differences between teleology

and metaphysical naturalism.

Pierre Lindenbaum obtained his PhD in virology in 2000, when he studied the virus-

host interactions. He then switched his professional career to bioinformatics, and after one

year at the French National Center of Genotyping (France) he joined the French startup

Integragen in 2001. He now works as a bioinformatician at the Fondation Jean Dausset-

CEPH, a genetic research center located in Paris.

Jayant Madhavan is a senior software engineer at Google Inc. and was the technical lead

on its Deep Web crawling initiative. Prior to that, he was the chief architect at Tranformic

Inc. (acquired by Google in 2005), a company that created search engines for the Deep

Web. Dr. Madhavan received his PhD in computer science from the University of Wash-

ington in 2005.

Michal Migurski is a partner at Stamen Design, where he leads the technical and

research aspects of the work. He has been building for the Web since 1995, specializing in

big, exciting data sets and the means to communicate and disseminate them to broad

audiences for a variety of clients. He speaks publicly on these and other topics to academic

and industry audiences, participates actively in a variety of open source development

efforts, maintains an active weblog at http://mike.teczno.com, and holds a degree in cognitive

science from UC Berkeley.

http://jeffjonas.typepad.com
http://mike.teczno.com

C O N T R I B U T O R S 353

Cameron Neylon is a biophysicist who has always worked in interdisciplinary areas and is

a well-known advocate of open research practice and improved data management. He cur-

rently works as senior scientist in biomolecular sciences at the ISIS Neutron Scattering facil-

ity at the Science and Technology Facilities Council (STFC). He writes and speaks regularly

on the interface of web technology with science and the successful (and unsuccessful) appli-

cation of generic and specially designed tools in the academic research environment.

Peter Norvig is director of research at Google Inc. He is a Fellow of the AAAI and the

ACM and coauthor of Artificial Intelligence: A Modern Approach (Prentice Hall), the leading

textbook in the field. Previously he was head of computational sciences at NASA and a

faculty member at USC and Berkeley.

Brendan O’Connor is a researcher in machine learning and natural language processing.

He is a scientific consultant at Dolores Labs and worked previously as a relevance engineer

at Powerset. He received a BS and MS in symbolic systems from Stanford University, and

is back to academia this fall as a graduate student at Carnegie Mellon University. His blog,

“Artificial Intelligence and Social Science,” is at http://anyall.org/blog.

David Poole is a member of the Statistics Research Department at AT&T Labs and was

recently the secretary/treasurer of the Section on Statistical Computing of the American

Statistical Association. He has extensive experience with large-scale data mining, such as

the analysis of customer calling data for traffic engineering and fraud detection.

Raghu Ramakrishnan is chief scientist for Audience and Cloud Computing at Yahoo!,

and is a Research Fellow. His work in database systems—with a focus on data mining,

query optimization, and web-scale data management—has influenced query optimization

in commercial database systems and the design of window functions in SQL:1999. His

paper on the Birch clustering algorithm received the SIGMOD 10-Year Test-of-Time

award, and he has written the widely used text Database Management Systems (with

Johannes Gehrke; McGraw-Hill). He is Chair of ACM SIGMOD, and a Fellow of the ACM

and IEEE.

Toby Segaran is the author of two O’Reilly titles, the very popular Programming Collective

Intelligence and the recently released Programming the Semantic Web. He currently works at

Metaweb, where he develops large-scale reconciliation algorithms in an attempt to create

a free database of shared keys for all other public databases. Prior to working at Metaweb,

he started a biotech software company, which was acquired in 2003 by Genstruct, a sys-

tems biology company. Toby has a BS in computer science from MIT and lives in San

Francisco with his wife, Brooke. You can read more of his writing and data experiments at

http://blog.kiwitobes.com.

Lisa Sokol is currently a consultant within IBM’s Global Business Services group, spe-

cializing in Entity Analytics. Her primary area of interest is helping the law enforcement

and intelligence communities discover actionable information buried within their very

large data collections. She has architected a large number of systems that detect and

assess threat risk relative to fraud, terrorism, counterintelligence, and criminal activity.

http://www.google.com
http://www.aaai.org/Awards/fellows-current.php
http://www.aaai.org/
http://acm.org/
http://acm.org/
http://www.ic.arc.nasa.gov/
http://www.ic.arc.nasa.gov/
http://anyall.org/blog
http://blog.kiwitobes.com

354

She has helped pioneer the application of technologies such as data mining, text mining,

and machine translation to exploit the information accessible to shared intelligence environ-

ments. Dr. Sokol has numerous papers published in these areas. She received her doctorate

in Operations Research from the University of Massachusetts.

Utkarsh Srivastava is a senior research scientist at Yahoo! Research. His primary

research interest is in building systems to solve large-scale data management problems.

Prior to developing PNUTS, he played an active role in the development of Pig, a declara-

tive query language over Hadoop. He obtained his PhD from Stanford University, where he

worked on query processing over streaming data and several query optimization problems.

Deborah Swayne is a member of the Statistics Research Department at AT&T Labs, a Fel-

low of the American Statistical Association, and a past chair of the ASA Section on Statis-

tical Graphics. She is a coauthor of the widely used ggobi high-dimensional data

visualization software.

Jud Valeski is cofounder and CTO of Gnip, a data portability software initiative. From

client-side consumer facing products to large-scale backend infrastructure projects, he has

enjoyed working with technology for over 20 years. He’s been a part of engineering, product,

and M&A teams at IBM, Netscape, onebox.com, AOL, and me.dium. Jud has played a central

role in the release of a wide range of products used by tens of millions of users worldwide.

Hadley Wickham is an assistant professor of statistics at Rice University and is interested in

developing tools (both computational and cognitive) for making data preparation, visualiza-

tion, and analysis easier. He has developed 15 R packages, and in 2006 won the John Cham-

bers Award for Statistical Computing for his work on the ggplot and reshape R packages.

Antony Williams is the president of ChemZoo Inc. and the host of ChemSpider, an online

free access service for chemists established with the intention of building a structure-centric

community for chemists. He has spent over a decade in the commercial scientific software

business as chief science officer for Advanced Chemistry Development (ACD/Labs), and

during his tenure oversaw its product development, marketing, and sales teams. He is an

accomplished NMR spectroscopist with over 100 peer-reviewed publications. During his

career he was the NMR technology leader for the Eastman Kodak Company and has

worked in both academia and national government research institutions. He has recently

taken his passion for providing access to chemistry-related information and software ser-

vices to the masses by hosting the ChemSpider service.

Egon Willighagen is a scientist at Uppsala University in Sweden working on data analysis

in the field of pharmaceutical life sciences. His research involves the development of statis-

tical methods and software for molecular chemometrics and proteochemometrics. He is

release manager for the Chemistry Development Kit and Metware, and has contributed to

other open source cheminformatics projects for more than 10 years, among which are

Jmol and Bioclipse.

C O N T R I B U T O R S 355

Jo Wood is a Reader in Geographic Information at the giCentre, City University London

(http://gicentre.org). He has been involved in research in the analysis of landscape form

since 1990 and is the author of the GIS LandSerf for the visual exploration of surfaces. As

a geographer and programmer, he has been writing software in Java for the last decade

or so to create geovisualization solutions for data analysis problems. He is the author of

the textbook Java Programming for Spatial Sciences (CRC). When not analyzing landscapes

with a computer, he can usually be found cycling over them.

Matt Wood heads up Production Software at the Wellcome Trust Sanger Institute, where

he is responsible for the software that drives the Institute’s world-class sequencing facility.

Nathan Yau is a statistics PhD candidate at the University of California, Los Angeles, and

has a BS in electrical engineering and computer science from the University of California,

Berkeley. His research focuses on data visualization, self-surveillance, and how our digital

selves intertwine with the physical world. Largely inspired by a summer internship as a

graphics editor at the New York Times, Yau also maintains the leading statistics and data

visualization blog, FlowingData (http://flowingdata.com/), which revolves around how

designers, statisticians, and computer scientists use data to help us make better decisions.

http://gicentre.org
http://flowingdata.com/

357

I N D E X C H A P T E R 0

A
accessibility, data collection considerations

for, 19, 23
accuracy of data, 21, 29
ACID model of database transactions, 58
action points, 75
action research, 78
Amazon Dynamo system, 69
analysis of data (see data analysis)
anchoring, fallacy involving, 217
Apache Hadoop project (see Hadoop system)
Argus portal, 81
asymmetry of risk-taking, 208
asynchronous data collection, 4
author identification of corpus data, 239
Autonomy Corporation, 78
Azure SDS, 70

B
base rate fallacy, 215
Bay Area housing market analysis (see

housing market analysis)
“best-effort” approach to database

transactions, 58
biases in interpretation of data, 205, 217
Biewald, Lukas (author), 279–301
BigTable system, 68
binary data, 41
BitTorrent, 121
Blackburne, Ben (author), 243–258
blind URLs, 131
books and publications

Building the Data Warehouse (Inmon), 76
“A Business Intelligence System”

(Luhn), 75
The Code Book (Singh), 230
The Data Warehouse Toolkit (Kimball), 76

The Fifth Discipline (Senge), 78
Secret Code Breaker (Raynard), 233

Bradley, Jean-Claude (author), 259–277
brains, as Information Platforms, 73
Brants, Thorsten (trillion-word data set

published by), 219
browser compatibility, testing for, 24
Building the Data Warehouse (Inmon), 76
Business Intelligence system, 75
“A Business Intelligence System” (Luhn), 75

C
Caesar ciphers, 228
cameras (imagers) for Phoenix Mars Lander

system, 38, 53
Campaingr software, 3
cancer’s effects on DNA, 246
cartography, 86
Cassandra system, 70, 81
causality, not related to correlation, 210
CCD (charge-coupled device) imagers, 37
Census data website, 336
census data, project using (see sense.us

website)
Center for Embedded Networked Sensing at

UCLA, 2
Center for Responsible Politics website, 336
charge-coupled device (CCD) imagers, 37
Cheetah system, 79
chemical data for research (see raw data,

providing to users)
ChemSpider, 266
Chicago Crime project, 168
CIELab color model, 95
cloud system, 56, 70

(see also PNUTS system)
The Code Book (Singh), 230
code examples in this book, using, xiv

358 I N D E X

collecting data (see data collection)
collective reconciliation, 344–348
color schemes in data visualization

for customer survey project, 23
for Geograph archive, 93, 95
for PEIR system, 9, 10
for sense.us website, 184, 191

conditional probability, definition of, 220
confirmation bias, 208
consistency of data after updates, 57–64
consumer price index (CPI), 307
contact information for this book, xiv
context-less directories, 113
Cooper, Brian F. (author), 55–71
corpus, definition of, 220

(see also natural language corpus data)
correlation, not related to causality, 210
CPI (consumer price index), 307
Crimespotting project (see Oakland

Crimespotting project)
CrimeWatch application (see Oakland

CrimeWatch application)
crowdsourced data, 260, 262
CUBE operator, 76
customer survey project, 19

data collection for, 19–30
form design for, 21–30
length of survey, 20, 24–27
reporting results of, 30

D
data analysis

biases in people’s interpretation of
data, 205, 217

of corpus data (see natural language corpus
data)

correlation not related to causality, 210
dependencies not controlled in, 215
of free-form data, 290–294
for housing market analysis, 306–319
large data sets increasing cost of, 210
large data sets not necessarily

improving, 209
limitations of data in, 208–217
narrative fallacy in, 207
patterns, people’s skill at recognizing, 206
predictions not made by, 213
probabilities as not intuitive, 215
single outcomes not answered by, 211
for social stereotypes data, 282, 290–294
stories created from data, 208, 211
subjective and quantitative information

required for, 216
tools for, 282

data collection
accessibility considerations for, 19, 23
accuracy of data, 21, 29
asynchronous, 4
for customer survey project, 19–30
for YFD system, 4
history of, 1
for housing market analysis, 304
inherent problems with, 259
motivation considerations for, 21, 30
for music video, 150–154, 155–159, 164
for Oakland Crimespotting project, 169–174
of personal data, 3–5
for PEIR system, 3, 4
perception considerations for, 20–21
for Phoenix Mars Lander system, 37
for sense.us website, 186–188
trust considerations for, 20, 28
Twitter used for, 4, 13
UX design practices for, 18
for YFD system, 3

“data finds data” concept, 105
benefits of, 106
example of, 107–111
requirements for, 115–117
(see also discoverability of data; findability

of data)
data integration, 335

benefits of, 337
collective reconciliation for, 344–348
matching on multiple fields for, 344
naming inconsistencies, problems

with, 341–343
representation problem of, 339
sources of public data, 336
within companies, 338

data management stack, by Microsoft, 82
data processing

for music video, 160
for PEIR system, 6
for Phoenix Mars Lander system, 42,

46–51, 53
validating crowdsourced data, 262

data scientists, 83
data sharing

for PEIR system, 12
for sense.us website, 194–199, 201

data storage
binary data, 41
cloud system for, 56, 70
DNA as a method of, 243–250
for social data, 121
geo-replication of data, 56, 58
naming inconsistencies in, 341–343
packing data for, 40

I N D E X 359

partitioning to enable scale-out, 56, 62
for Phoenix Mars Lander system, 40, 43–46
representation problems in, 339
(see also Data Warehouse; databases)

data transfer
over Internet, methods of, 119
for Phoenix Mars Lander system, 37, 52
of social data, methods for, 120, 122–128

data visualization
for customer survey project, 30
for Geograph archive, 89–91, 95–98
goals for, 7, 14
for Oakland Crimespotting project,

174–181
for PEIR system, 8–12
of personal data, 7–14
of political data (see political data)
for Radiohead’s “House of Cards”

video, 161–164
of raw data (see raw data, providing to

users)
of sense.us website, 188–194
social data analysis and, 184, 199
for social stereotypes data, 285–290
for YFD system, 13

Data Warehouse, 75–78
(see also Facebook’s Information Platform)

The Data Warehouse Toolkit (Kimball), 76
data, querying

for Deep Web surfacing, 138–144
for Yahoo! PNUTS system, 64–67

data/ink ratio in graphics, 90
data/location ratio of graphics, 90
databases

cloud system for (see cloud system)
consistency considerations for, 57–64
dimensional model for, 76
for PEIR system, 5
relational model for, 76
for YFD system, 5
(see also data storage; Data Warehouse)

Databee system, 81
dataspaces, 83
Davis, Brandon (particle specialist at The

Syndicate), 160
Deep Web, 133–137

(see also surfacing)
dependencies in data, difficulty in

controlling, 215
design of forms (see form design)
dimensional model for data, 76
directories, used for enterprise

discoverability, 113–115
disabilities, accessibility considerations for

people with, 19, 23

discoverability of data, 106
components of, 115–117
directories used for, 113–115
enterprise discoverability, 111
federated fetch used for, 113
federated search used for, 111
privacy considerations for, 118
relevance of data, determining, 115
(see also “data finds data” concept;

findability of data)
distributions, usefulness of, 11, 209, 211, 285
DNA

bases in, 244
cancer’s effects on, 246
cracking the code of, 248
as a data source, management of, 250–257
as a data store, 243–250
evolution’s effects on, 249
future developments using, 257
hacking or modifying, 245, 257
purpose of, 245
replication of, 247
sequencing platform for, 254–257
sexual reproduction not mixing genes, 249

DNA sequencing of corpus data, 240
document unshredding of corpus data, 240
downlink, in space missions, 38, 52
Droz, Pierre-Yves (Lidar data guru), 160
Dykes, Jason (author), 85–101
Dynamo system, 69

E
Edwardes, Alistair (research using

Geograph), 92
Endeca, 78
enterprise discoverability, 111
enterprise search, 78
Environmental Protection Agency website, 336
epigenetics, 246
ETL (Extract, Transform, and Load) process, 75
event-driven architecture, 125–128
eventual consistency of data, 59
examples in this book, using, xiv
Excel (data analysis package), 282
Extract, Transform, and Load (ETL) process, 75

F
Facebook

self-analysis by, 74
sharing data using, 12

Facebook’s Information Platform
Argus portal, 81
Cassandra system, 70, 81
Cheetah system, 79

360 I N D E X

Facebook’s Information Platform (continued)
comparison to FIM platform, 82
comparison to Microsoft’s data

management stack, 82
Databee system, 81
Hadoop system used by, 79–82
Hive framework, 81
PyHive framework, 81

FaceStat.com website, 279
Fast Search and Transfer (FAST), 78
federated fetch, 113
federated search, 111
The Fifth Discipline (Senge), 78
FIM (Fox Interactive Media) platform, 82
findability of data, 174

(see also “data finds data” concept;
discoverability of data)

Follett, Jonathan (author), 17–33
Food and Drug Administration website, 337
form design

browser compatibility, testing, 24
for customer survey project, 21–30
dynamic form length for, 24–27
typography, 23
UX design practices for, 18
whitespace in, 23

forms
information behind (see Deep Web)
processing of, 137–138

Fox Interactive Media (FIM) platform, 82
Franz, Alex (trillion-word data set published

by), 219
Frost, James (director of “House of Cards”

project), 149

G
Gelman, Andrew (author), 323–332
Genomes Project, 253
geocoding data for housing market

analysis, 305
Geograph archive, 86–88

beauty in, identifying, 87, 89, 98, 101
characteristics of, term hierarchy for, 91–94
location information, representation of,

95–98
treemaps representing, 90, 95
visualization of, 89–91, 95–98

geolocation, 170, 172
(see also location information,

representation of)
Geometric Informatics GeoVideo system,

153, 158
Geonames website, 336

geo-replication of data, 56, 58
GeoVideo system (see Geometric Informatics

GeoVideo system)
geovisual analytics, 86
Ghitza, Yair (author), 323–332
Gnip, 120, 131

events and polling both allowed by, 127
normalizing social data, 129
public versus private data use by, 131

Google BigTable system, 68
Google, trillion-word data set taken from (see

natural language corpus data)
Gould, Stephen Jay (statement about

descriptive statistics and
variation), 212

graphics (see Geograph archive; Phoenix Mars
Lander system; political data; sense.
us website; Radiohead’s “House of
Cards” video)

Guha, Rajarshi (author), 259–277

H
Hadoop distributed filesystem (HDFS), 81
Hadoop project, 70, 79–82
Halevy, Alon (author), 133–147
Hammerbacher, Jeff (author), 73–84
hash-partitioned data, 62
HDFS (Hadoop distributed filesystem), 81
health departments, public data available

from, 336
Heer, Jeffrey (author), 183–203
Hive framework, 81
Holm, Matthew (author), 17–33
Holovaty, Adrian (Chicago Crime project), 168
“House of Cards” video (see Radiohead’s

“House of Cards” video)
housing market analysis, 303

analysis of data, 306–319
census information adding value to, 314
conclusions of, 319
data checking for, 305
data collection for, 304
geocoding the data, 305
geographic variations in data, 311–314
inflation, effects of, 307
rich and poor groups, effects on, 308
San Francisco-specific results, 318

HTML 5 events, 126
HTTP, 120
Hughes, J. M. (author), 35–53
Human Genome Project, 250

(see also DNA)

I N D E X 361

I
Image Compression Sub-System (ICS), 42
images (see Geograph archive; Phoenix Mars

Lander system; Radiohead’s “House
of Cards” video)

Information Platforms, 74, 83
(see also Facebook’s Information Platform)

information visualization, 86
informative test for surfacing, 142
informativeness test for surfacing, 136
Inmon, Bill (Building the Data

Warehouse), 76
Integrated Public Use Microdata Series

(IPUMS) databases, 186
integrating data from separate sources (see

data integration)
International Cancer Genome Consortium, 253
IPUMS (Integrated Public Use Microdata

Series) databases, 186

J
Jonas, Jeff (author), 105–118

K
Kahneman, Daniel (experiment about prospect

theory), 208, 215
Kastellec, Jonathan P. (author), 323–332
Kimball, Ralph (The Data Warehouse

Toolkit), 76
Klump, Valdean (author), 149–165
Koblin, Aaron (author), 149–165
Krumme, Coco (author), 205–217

L
Lake Wobegon effect, 217
Lang, Andrew (author), 259–277
language identification of corpus data, 239
“Learning Organization” concept, 78
Lewin, Kurt (“action research” concept), 78
libraries, as Information Platforms, 73
Lidar scanner (see Velodyne Lidar scanner)
Lindenbaum, Pierre (author), 259–277
Lindsay, Jeff (Web Hooks concept), 127
Linguistic Data Consortium, 219
location information, representation of

for Geograph archive, 95–98
for Oakland Crimespotting project,

174–181
for PEIR system, 8–11
for political data, 330
for sense.us website, 188–194

Luhn, Hans Peter (“A Business Intelligence
System”), 75

luxury product, survey for (see customer
survey project)

M
machine translation of corpus data, 240
Madhaven, Jayant (author), 133–147
maps (see location information, representation

of)
Mars Lander system (see Phoenix Mars Lander

system)
mastership of records, 60, 61
materialized views, 66
Matlab (data analysis package), 282
Matplotlib (data analysis package), 282
Matsumoto, Yukihiro (Ruby programming

language), 89, 98
MECA Optical Microscope (OM) camera, 38
mediator

accessing Deep Web using, 135
for social data (see Gnip)

Medicare website, 337
message boards, public data available

from, 337
Microsoft Azure SDS, 70
Microsoft’s data management stack, 82
Migurski, Michal (author), 167–182
MObStor system, 71
Modest Maps library, 8
Morville, Peter (“findability” concept)
motivation considerations for data

collection, 21, 30
music video based on data (see Radiohead’s

“House of Cards” video)

N
narrative fallacy, 207
National Center for Biotechnology Information

(NCBI) website, 336
natural language corpus data, 219, 240

author identification of, 239
DNA sequencing of, 240
document unshredding of, 240
language identification of, 239
machine translation of, 240
search strategies used for, 241
secret codes in, analysis of, 228–234
spam detection in, 239
spelling correction of, 234–239
word segmentation analysis of, 221–227

NCBI (National Center for Biotechnology
Information) website, 336

362 I N D E X

Neylon, Cameron (author), 259–277
normalization of social data, 128–131
Norvig, Peter (author), 219–242
Num Py (data analysis package), 282

O
Oakland Crimespotting project, 167

data collection from CrimeWatch, 169–174
visualizing data online, 174–181

Oakland CrimeWatch application, 169–174
OAuth, 130
O’Connor, Brendan (author), 279–301
Open Notebook Science, 261
Optical Microscope (OM) camera, 38

P
P2P protocol, 121
partitioning data, 56
patterns, people’s skill at recognizing, 206
PEIR (Personal Environmental Impact Report)

system, 2
data collection for, 3, 4
data processing for, 6
data visualization for, 8–12
database design for, 5
participating in, 15
sharing data from, 12

perception considerations for data
collection, 20–21

persistent context, 115
personal data

collection of, 3–5
visualization of, 7–14

Personal Environmental Impact Report (see
PEIR system)

Phoenix Mars Lander system, 35–40
cameras (imagers) for, 38, 53
computer used for, 37
data collection for, 37
data packing for, 40
data processing for, 42, 46–51, 53
data storage for, 43–46
data transfer for, 37, 52
image compression for, 50
websites about, 54

photographs (see Geograph archive; Phoenix
Mars Lander system)

planning fallacy, 212
PNUTS system, 56

comparison with Azure SDS, 70
comparison with BigTable system, 68
comparison with Cassandra system, 70
comparison with Dynamo system, 69
geo-replication of data in, 56, 58

partitioning data for scale-out, 56, 62
querying data, 64–67
updating data, 57–64

political data, 323
age, effect on vote choice, 328
graphics used for, 323
mapping partisanship in Pennsylvania, 330
predicting vote choice, 326
redistricting, effect on partison bias, 324
supreme court nominees, senate voting

patterns on, 328
polling, 123
Poole, David (author), 303–321
Popper, Karl (statement about

falsifiability), 209, 213
predictions, difficulty in making from

data, 213
privacy, with “data finds data” systems, 118
probabilistic model, 221
probability, 215, 220
public data, sources of, 336
Purves, Ross (research using Geograph), 92
PyHive framework, 81

Q
Quants, as Data Scientists, 84

R
R (data analysis package), 282, 300
RAC (Robotic Arm Camera), 38
Radiohead’s “House of Cards” video, 149

data capture equipment for, 150–154
data capturing process for, 155–159, 164
data processing for, 160
data sample for, 154
launching, 161–164

Ramakrishnan, Raghu (author), 55–71
range-partitioned data, 62
rate limiting, used with polling, 123
raw data, providing to users

application for querying live data, 265
collecting crowdsourced data, 260
further experiments suggested by, 271–274
integrating data with other data

resources, 266
problems created by, 275–277
reasons for, 259, 274, 276
representing data online, 263–271
self-describing data formats for, 269
unique identifiers required for, 263, 269
validating crowdsourced data, 262

Raynard, Robert (Secret Code Breaker), 233
RDF (Resource Description Framework), 269

I N D E X 363

real estate sales, analysis of (see housing
market analysis)

record-level mastership, 61
relational model for data, 76
replication

of DNA, 247
geo-replication of data, 56, 58

reporting on data results (see data
visualization)

REpresentational State Transfer (REST), 122
Resource Description Framework (RDF), 269
resources (see books and publications; website

resources)
REST (REpresentational State Transfer), 122
Rice algorithm for compression, 51
Robotic Arm Camera (RAC), 38
roulette wheel example of “data finds

data”, 107–111

S
San Francisco housing market analysis (see

housing market analysis)
Sanger Institute’s sequencing platform for

DNA data, 254–257
SAS (data analysis package), 282
scale-out feature for data storage, 56
Sci Py (data analysis package), 282
search engines, accessing Deep Web from (see

surfacing)
search strategies for corpus data, 241
Secret Code Breaker (Raynard), 233
secret codes in corpus data, analyzing,

228–234
Securities and Exchange Commission

website, 336
Segaran, Toby (author), 335–348
semantically reconciled and relationship-

aware directories, 114
semantically reconciled directories, 114
Senge, Peter (The Fifth Discipline), 78
sense.us website, 184, 186

Birthplace Voyager graph, 191
census data used for, 186–188
collaboration features of, 194–199, 201
doubly linked discussions, 195
field tests of, 199–203
Job Voyager graph, 191
pointing with graphical annotations, 196
population pyramid, 192
scatter plot display, 192
social navigation, 198
state map, 192
views, collecting and linking, 197
views, sharing, 194
visualization of data, 188–194

Sequencescape tools, 254
sequencing platform for DNA data, 254–257
shift ciphers, 228
Singh, Simon (The Code Book), 230
social data, 119

business value of, 129–131
formats for, current, 121
normalizing, 128–131
public versus private data, 130
sharing and collaborating on, 194–199, 201
transporting, APIs for, 122–128
transporting, current methods for, 120
visualization and analysis of, 184, 199
visualization of, 188–194

social networks, public data available on, 336
social stereotypes, researching, 279

clustering types of people, 295–300
data analysis, 282, 290–294
gendered words, determining, 294
preprocessing the data, 280
presentation of data results, 285–290

Sokol, Lisa (author), 105–118
space missions (see Phoenix Mars Lander

system)
spam detection in corpus data, 239
spelling correction of corpus data, 234–239
SPSS (data analysis package), 282
Srivastava, Utkarsh (author), 55–71
Stata (data analysis package), 282
Stereo Surface Imager (SSI), 38
stereotypes (see social stereotypes,

researching)
storage cloud, 56, 70

(see also PNUTS system)
stories created from data, 208, 211
stylometry of corpus data, 239
substitution ciphers in corpus data,

analyzing, 228–234
surfacing, 135, 136

challenges of, 136
informative test for, 136, 142
inputs for, selecting, 140, 144–146
queries for, selecting, 138–144
query templates for, 139, 141, 143

survey project (see customer survey project)
Swayne, Deborah F. (author), 303–321
The Syndicate (visual effects house), 160

T
timeline consistency of data, 59–61, 63, 71
tokens, definition of, 220
Trademark database, 336
transactions, with geo-replication, 57
translation by machine of corpus data, 240

364 I N D E X

treemaps, 90, 95
trillion-word data set (see natural language

corpus data)
trust considerations for data collection, 20, 28
Tversky, Amos (experiment about prospect

theory), 208
Twitter, used for data collection, 3, 4, 13
typography in form design, 23

U
U.S. Census data website, 336
U.S. census data, project using (see sense.us

website)
U.S. Department of Agriculture website, 336
unshredding of corpus data, 240
uplink, in space missions, 38
urban data (see Oakland Crimespotting

project)
Urban Sensing group at UCLA, 2
Urban Wallace Associates, survey for (see

customer survey project)
USC WebGIS service, 305
UX (user experience) design, 17

V
Valeski, Jud (author), 119–131
Velodyne Lidar scanner, 151, 155–158
vertical search, 134, 135
views, materialized, 66
visual data (see Geograph archive; Phoenix

Mars Lander system)
vocabulary, definition of, 220
voting choices (see political data)

W
WAN scale events, 127
Web Hooks, 127
WebGIS service, 305

website resources
ChemSpider, 266
Chicago Crime project, 168
FaceStat.com, 279
Genomes Project, 253
Integrated Public Use Microdata Series

(IPUMS) databases, 186
International Cancer Genome

Consortium, 253
Linguistic Data Consortium, 219
PEIR system, 15
Phoenix Mars Lander system, 54
public data sources, list of, 336
sense.us website, 184
for this book, xiv
YFD system, 15

websites, information behind (see Deep Web)
Wickham, Hadley (author), 303–321
Williams, Antony (author), 259–277
Willighagen, Egon (author), 259–277
Wood, Jo (author), 85–101
Wood, Matt (author), 243–258
word segmentation analysis of corpus

data, 221–227

X
XML, 121
XMPP, 120

Y
Yahoo! cloud systems, 70

(see also PNUTS system)
Yahoo! Distributed Hash Table (YDHT), 62
Yahoo! Distributed Ordered Table (YDOT), 62
Yau, Nathan (author), 1–15
YFD (your.flowingdata) system, 2, 3

data collection for, 3, 4
data visualization for, 13
database design for, 5
participating in, 15

C O L O P H O N

The cover image is a stock photo from Jupiter Images. The cover fonts are Akzidenz

Grotesk and Orator. The text font is Adobe’s Meridien; the heading font is ITC Bailey.

	Contents
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online

	Seeing Your Life in Data
	Personal Environmental Impact Report (PEIR)
	your.flowingdata (YFD)
	Personal Data Collection
	Working Data Collection into Routine
	Asynchronous data collection

	Data Storage
	Data Processing
	Data Visualization
	PEIR
	Mapping location-based data
	Experimenting with visual cues
	Mapping multivariate location traces
	Choosing a color scheme
	Making trips interactive
	Displaying distributions
	Sharing personal data

	YFD

	The Point
	How to Participate

	The Beautiful People: Keeping Users in Mind When Designing Data Collection Methods
	Introduction: User Empathy Is the New Black
	What Is UX?
	The Benefits of Applying UX Best Practices to Data Collection

	The Project: Surveying Customers About a New Luxury Product
	Specific Challenges to Data Collection
	Challenges of Accessibility
	Challenges of Perception
	Building trust
	Length of survey
	Accurate data collection
	Motivation

	Designing Our Solution
	Design Philosophy
	Designing the Form Layout
	Web form typography and accessibility
	Giving them some space
	Accommodating different browsers and testing for compatibility
	Interaction design considerations: Dynamic form length
	Designing trust
	Designing for accurate data collection
	Motivation
	Reporting the live data results

	Results and Reflection

	Embedded Image Data Processing on Mars
	Abstract
	Introduction
	Some Background
	To Pack or Not to Pack
	The Three Tasks
	Slotting the Images
	Passing the Image: Communication Among the Three Tasks
	Getting the Picture: Image Download and Processing
	Image Compression
	Downlink, or, It’s All Downhill from Here
	Conclusion

	Cloud Storage Design in a PNUTShell
	Introduction
	Updating Data
	The Challenge
	Our Approach
	More on mastership
	Supporting ordered data
	Trading off consistency for availability

	Complex Queries
	The Challenge
	Our Approach

	Comparison with Other Systems
	Google’s BigTable
	Amazon’s Dynamo
	Microsoft Azure SDS
	Other Related Systems
	Other Systems at Yahoo!

	Conclusion
	Acknowledgments
	References

	Information Platforms and the Rise of the Data Scientist
	Libraries and Brains
	Facebook Becomes Self-Aware
	A Business Intelligence System
	The Death and Rebirth of a Data Warehouse
	Beyond the Data Warehouse
	The Cheetah and the Elephant
	The Unreasonable Effectiveness of Data
	New Tools and Applied Research
	MAD Skills and Cosmos
	Information Platforms As Dataspaces
	The Data Scientist
	Conclusion

	The Geographic Beauty of a Photographic Archive
	Beauty in Data: Geograph
	Visualization, Beauty, and Treemaps
	What Is Beauty in Visual Data Exploration?
	Making Treemaps Beautiful: A Geographic Perspective

	A Geographic Perspective on Geograph Term Use
	Representing the Term Hierarchy
	Representing Absolute Location with Color
	Representing Relative Location with Spatial Treemaps
	Representing Location Displacement

	Beauty in Discovery
	Reflection and Conclusion
	Acknowledgments
	References

	Data Finds Data
	Introduction
	The Benefits of Just-in-Time Discovery
	Corruption at the Roulette Wheel
	Enterprise Discoverability
	Federated Search Ain’t All That
	Directories: Priceless
	Relevance: What Matters and to Whom?
	Components and Special Considerations
	The Existence of, and Availability of, Observations
	The Ability to Extract and Classify Features from the Observations
	The Ability to Efficiently Discover Related Historical Context
	The Ability to Make Assertions (Same or Related) About New Observations
	The Ability to Recognize When New Observations Reverse Earlier Assertions
	The Ability to Accumulate and Persist This Asserted Context
	The Ability to Recognize the Formation of Relevance/Insight
	The Ability to Notify the Appropriate Entity of Such Insight

	Privacy Considerations
	Conclusion

	Portable Data in Real Time
	Introduction
	The State of the Art
	Transport
	XMPP
	BitTorrent
	Proprietary/P2P

	Formats
	APIs
	Polling
	Rate limiting
	Getting it right
	Zero miles per gallon efficiency

	Events
	HTML 5 events

	WAN Scale Events

	Social Data Normalization
	Business Value of Data
	Public versus private

	Conclusion: Mediation via Gnip

	Surfacing the Deep Web
	What Is the Deep Web?
	Alternatives to Offering Deep-Web Access
	Basics of HTML Form Processing
	Queries and Query Templates
	Selecting Input Combinations
	Quality of query templates
	Informativeness test
	Searching for informative query templates

	Predicting Input Values
	Generic text inputs
	Typed text inputs

	Conclusion and Future Work
	References

	Building Radiohead’s House of Cards
	How It All Started
	The Data Capture Equipment
	Velodyne Lidar
	Geometric Informatics

	The Advantages of Two Data Capture Systems
	The Data
	Capturing the Data, aka “The Shoot”
	The Outdoor Lidar Shoot
	The Indoor Lidar Shoot
	The Indoor GeoVideo Shoot

	Processing the Data
	Post-Processing the Data
	Launching the Video
	Conclusion

	Visualizing Urban Data
	Introduction
	Background
	Cracking the Nut
	Making It Public
	Revisiting
	Conclusion

	The Design of Sense.us
	Visualization and Social Data Analysis
	Data
	Visualization
	Design Considerations
	Foster personal relevance
	Provide effective visual encodings
	Make each display distinct
	Support intuitive exploration
	Be engaging and playful

	Visualization Designs
	Job Voyager
	Birthplace Voyager
	U.S. census state map and scatterplot
	Population pyramid
	Implementation details

	Collaboration
	View Sharing
	Doubly Linked Discussion
	Pointing via Graphical Annotation
	Collecting and Linking Views
	Awareness and Social Navigation
	Unobtrusive Collaboration

	Voyagers and Voyeurs
	Hunting for Patterns
	Making Sense of It All
	Crowd Surfing

	Conclusion
	References

	What Data Doesn’t Do
	When Doesn’t Data Drive?
	1. More Data Isn’t Always Better
	2. More Data Isn’t Always Easy
	3. Data Alone Doesn’t Explain
	4. Data Isn’t Good for a Single Answer
	5. Data Doesn’t Predict
	6. Probability Isn’t Intuitive
	7. Probabilities Aren’t Intuitive
	8. The Real World Doesn’t Create Random Variables
	9. Data Doesn’t Stand Alone
	10. Data Isn’t Free from the Eye of the Beholder

	Conclusion
	References

	Natural Language Corpus Data
	Word Segmentation
	Secret Codes
	Spelling Correction
	Other Tasks
	Language Identification
	Spam Detection and Other Classification Tasks
	Author Identification (Stylometry)
	Document Unshredding and DNA Sequencing
	Machine Translation

	Discussion and Conclusion
	Acknowledgments

	Life in Data: The Story of DNA
	DNA As a Data Store
	DNA Makes RNA Makes Proteins
	Hacking Your DNA Data Store with Drugs
	Cancer
	Replication
	Cracking the Code
	DNA As Digital Storage
	Evolution As an Algorithm

	DNA As a Data Source
	A Quantum Leap
	“My God, It’s Full of Bases...”

	Fighting the Data Deluge
	The Sanger Institute’s Sequencing Platform
	Project management

	Flexible Data Capture
	Instrument and Data Management

	The Future of DNA
	How to Become a Genetic Hacker
	Next Next-Gen
	The Era of Big Data

	Acknowledgments

	Beautifying Data in the Real World
	The Problem with Real Data
	Providing the Raw Data Back to the Notebook
	Validating Crowdsourced Data
	Representing the Data Online
	Unique Identifiers for Chemical Entities
	Open Data and Accessible Services Enable a Wide Range of Visualization and Analysis Options
	Integrating Data with a Central Aggregation Service
	Enabling Data Integration via Unique Identifiers and Self-Describing Data Formats

	Closing the Loop: Visualizations to Suggest New Experiments
	Building a Data Web from Open Data and Free Services
	Acknowledgments
	References

	Superficial Data Analysis: Exploring Millions of Social Stereotypes
	Introduction
	Preprocessing the Data
	Exploring the Data
	Age, Attractiveness, and Gender
	Looking at Tags
	Which Words Are Gendered?
	Clustering
	Conclusion
	Acknowledgments
	References

	Bay Area Blues: The Effect of the Housing Crisis
	Introduction
	How Did We Get the Data?
	Geocoding
	Data Checking
	Analysis
	The Influence of Inflation
	The Rich Get Richer and the Poor Get Poorer
	Geographic Differences
	Census Information
	Exploring San Francisco
	Conclusion
	References

	Beautiful Political Data
	Example 1: Redistricting and Partisan Bias
	Example 2: Time Series of Estimates
	Example 3: Age and Voting
	Example 4: Public Opinion and Senate Voting on Supreme Court Nominees
	Example 5: Localized Partisanship in Pennsylvania
	Conclusion
	References

	Connecting Data
	What Public Data Is There, Really?
	The Possibilities of Connected Data
	Within Companies
	Impediments to Connecting Data
	The Representation Problem
	Shared Nouns and Shared Verbs
	The Same Thing with Different Names
	Different Things with the Same Name

	Possible Solutions
	Matching on Multiple Fields
	Collective Reconciliation

	Conclusion

	Contributors
	Index

